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Hand Sign Virtual Reality Data
Processing Using Padding Technique

Teja E. E. Tju', Julaiha P. Anggraini', and Muhammad U. Shalih'

Faculty of Information Technology, Universitas Budi Luhur, Jakarta Selatan, Indonesia

Corresponding author: Teja E. E. Tju (e-mail: teja.endraengtju@budiluhur.ac.id).

ABSTRACT This study focuses on addressing the challenges of processing hand sign data in Virtual Reality
environments, particularly the variability in data length during gesture recording. To optimize machine
learning models for gesture recognition, various padding techniques were implemented. The data was
gathered using the Meta Quest 2 device, consisting of 1,000 samples representing 10 American Sign
Language hand sign movements. The research applied different padding techniques, including pre- and post-
zero padding as well as replication padding, to standardize sequence lengths. Long Short-Term Memory
networks were utilized for modeling, with the data split into 80% for training and 20% for validation. An
additional 100 unseen samples were used for testing. Among the techniques, pre-replication padding
produced the best results in terms of accuracy, precision, recall, and F1 score on the test dataset. Both pre-
and post-zero padding also demonstrated strong performance but were outperformed by replication padding.
This study highlights the importance of padding techniques in optimizing the accuracy and generalizability
of machine learning models for hand sign recognition in Virtual Reality. The findings offer valuable insights
for developing more robust and efficient gesture recognition systems in interactive Virtual Reality
environments, enhancing user experiences and system reliability. Future work could explore extending these

techniques to other Virtual Reality interactions.

KEYWORDS Recurrent Neural Networks (RNNs), Sequential Data, Signal Processing.

I. INTRODUCTION

The development of Virtual Reality (VR) technology has
opened new opportunities in various fields [1], [2], including
education [3], [4], [5], rehabilitation [6], [7], [8], and the
development of applications for individuals with special needs
[9], [10]. One promising application is hand sign interpretation
for communication with individuals who have speech
disabilities [11], [12], [13]. However, hand-sign data
processing in a VR environment faces several challenges.
Specifically, the processing of hand sign data from VR devices
encounters difficulties, particularly concerning the variation in
data length generated during the recording process. Therefore,
in-depth research is needed to optimize the padding data
processing method to enhance hand sign interpretation
accuracy and efficiency.

Previous research has attempted to use VR technology to
assist individuals with speech disabilities through hand sign
interpretation. Some studies have used image datasets with
American Sign Language (ASL) [13], [14], [15] and
Malaysian Sign Language (MSL) [11]. Other research has
utilized triboelectric gloves that produce voltage graph
datasets [16]. Padding techniques are generally applied in
studies with sequential or graphical datasets, such as sign

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.395

language recognition [17], speech emotion recognition [18],
and padding modules [19] with neural network modeling, as
well as traffic flow prediction using Long Short-Term
Memory (LSTM) models [20].

The novelty of this research lies in its application of padding
techniques to VR hand sign data, specifically addressing the
variation in data length generated during the data collection
process using sequential primary data recorded directly from
VR devices. While our previous similar studies [21] have
focused solely on post-zero padding with 28 parameters,
requiring more complex RNN models, this research employs
22 parameters, allowing for a simpler model architecture
without sacrificing effectiveness. This approach highlights the
trade-off between model complexity and parameter count,
demonstrating that a streamlined model can still achieve
efficient performance. The innovative use of padding
techniques in the context of VR hand sign data, which is
relatively new, offers a targeted solution for enhancing VR
applications and supporting individuals with speech
disabilities.
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Il. METHODS

The research process is divided into four main stages, as
illustrated in Figure 1, Data Collection, Implementing Padding
Technique, Machine Learning Modeling, and Evaluation and
Testing. These stages ensure a comprehensive approach to
addressing the challenges of hand sign interpretation in a VR
environment.

Evaluation
and

Machine
Learning
Modeling

Implementing
Padding
Technique

Data

Collection Testing

Figure 1. Overview of research stages.

A. DATA COLLECTION

Primary data collection was conducted using the VR device
Meta Quest 2 [22], as shown in Figure 2. Ten types of hand
sign movements were collected based on ASL [23], [24], [25],
[26] and selected for their ease of use and compatibility with
VR devices. These signs, illustrated in Figure 3, were chosen
because they are common and straightforward, ensuring the
VR system can accurately capture them. Each sign was
recorded with 100 samples, providing sufficient data for
analysis.

Figure 2. Meta Quest 2: Immersive, all-in-one VR device [27].

Figure 3.

10 Hand sign movements.

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.395

Data collection was performed using an application
developed with Unity Editor [28], [29], as shown in Figure 4.
Each data recorded consists of 11 parameters each from the
left and right hand, including trigger touch, trigger pressed,
grip pressed, thumb touch, position (X, Y, Z), and quaternion
W, XY, 2).

)

Figure 4. VR data recording application.

B. IMPLEMENTING PADDING TECHNIQUES

Several padding methods were studied to understand how
to implement them in the context of VR hand gesture data.
Commonly used padding techniques, such as zero and
replication, are applied to balance the data length. Specifically,
variations like pre-zero, post-zero, pre- and post-zero, pre-
replication, post-replication, and pre- and post-replication
padding are explored. Figure 5 illustrates the explanation of
these padding techniques.

original ¥R Data

\/

Pre-Zero Padding Pre-Replication Padding
£ o —————

1

Post-Zero Padding Post-Replication Pac.'hr'g

SRS

2 & Pre. znd I‘ssrnepllcﬂno ’addlng
% zo [[—— —
z II{\/ll B

: | -

1 / \

Figure 5.

Comparison of padding techniques.
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The selected padding methods were applied to the collected
data and compared to identify the most effective approach for
managing data length variation. This process ensured
consistency and integrity in the machine learning workflow.
The goal of evaluating different padding techniques was to
improve the accuracy and efficiency of machine-learning
models for interpreting VR hand gestures.

C. MACHINE LEARNING MODELING

After the data has been processed using padding techniques,
machine learning models are developed and trained. The data
is divided into training data (80%) and validation data (20%).
Recurrent Neural Networks (RNNs) with Long Short-Term
Memory (LSTM) cells are utilized for modeling. LSTMs are
a specific type of RNN that effectively handles sequential data
and captures long-range dependencies while mitigating the
vanishing gradient problem common in traditional RNNs [30],
[31].

The model is trained on the training dataset and its
performance is evaluated using the validation dataset. Further
testing is conducted with new, unseen data to assess the
model’s effectiveness in real-world scenarios.

D. EVALUATION AND TESTING

Thoroughly evaluating the performance of the trained
model, several evaluation metrics were employed, including
accuracy, precision, recall, F1 score, and confusion matrix
analysis [32]. These metrics provided a comprehensive view
of the model’s performance, identifying areas where it
excelled and where further improvements were needed.

lll. RESULT AND DISCUSSION

The data collection phase successfully yielded 1,000
samples, evenly distributed across 10 selected ASL hand signs
(https://github.com/umaruta4/SignLanguage MTC Data/tree
/main/new_american_sign language). Each sign contributed
an equal number of samples, ensuring a balanced dataset for
further analysis. Figure 6 presents an example from the
collected data, highlighting the 11 parameters that define each
hand sign.

The overall graphs shown in Figure 6 illustrate the
recordings of a specific hand sign movement, the horizontal
axis of these graphs denotes the n-th Unity sampling, while the
vertical axis values correspond to various sensor readings [28].
The data is organized into graphs labeled from Sensor 0 to
Sensor 21, with a detailed explanation of the 11 parameters
provided in Table 1.

The application of various padding strategies played a
significant role in addressing the challenge of varying data
lengths in VR hand gesture datasets. The variations of zero and
replication padding techniques were systematically applied to
the dataset. The results of these padding implementations, as
depicted in Figure 7, show how the raw data in Figure 6 was
transformed into a consistent format across all samples. This
uniformity was essential in preserving the data's structural
integrity and ensuring that the machine learning algorithms
could process the data without being influenced by
inconsistencies in sequence length.

TABLEI
SENSOR DATA PARAMETERS

To further validate the robustness of the model, an Eeft Hﬂ(‘)“d lshght Iﬁ“d ?“,"ame;e" - ‘B'er T‘cal ‘3’“5 IV“l“e
ay €nsor cnsor Trigger 1ouc oolc¢an: U or
additional IQO new data samples were collected. These Sensor 1 Sensor 12 Trigoer Pressed _ Boolean: 0 or |
samples, which the model had not previously encountered, Sensor 2 Sensor 13 Grip Pressed Boolean: 0 or 1
were used to test its performance on unseen data. This step was Sensor 3 Sensor 14 Thumb Touch  Boolean: O or 1
crucial in determining the model’s real-world applicability and Sensor 4 Sensor 15 Position X Meter (m)
ensuring that it could generalize effectively beyond the initial Sensor 5 Sensor 16 Position Y Meter (m)
urng ! uld g 1z vely bey 1 Sensor 6 Sensor 17 Position Z Meter (m)
dataset. Sensor 7 Sensor 18 Quaternion W Scalar
The evaluation process, therefore, not only confirmed the Sensor 8 Sensor 19 Quaternion X Vector
model's effectiveness but also guided subsequent refinement Sensor 9 Sensor20  QuaternionY  Vector
AT . . . Sensor 10 Sensor 21 Quaternion Z Vector
and optimization efforts, ensuring a reliable and efficient
solution for interpreting VR hand gestures.
Gaood - Non podded graph
S2rsord Senso” 1 Sersr2 5=n3ar 3 Lensor 4 ersor a SEnsard Senser 3 SEN50F B 5ensord Sensor 10
0.05 0.03 Q.05 0.05 P “ea[ Ay o B LR . N a2 1 AT
] vae ) i {1\ " f \ f | il coo )
2 oo 000 G 000 cas /| e ;‘ | i ru‘ V] es |\ II . Voo e \'L VT e / \
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Figure 6. Example of ASL “Good” data with 22 parameters.
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Figure 7. Examples of VR hand gesture data after applying various padding techniques.
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The LSTM-based neural network model, shown in Figure
8, was designed to process the sequential hand gesture data
captured in the VR environment. After applying padding
techniques, the sequence length was standardized to match the
maximum Unity sampling length, which in this case was set
to 113 time steps. Each time step in the sequence contains 22
feature dimensions, corresponding to the 22 parameters
recorded from both hands during gesture performance.

masking {(Masking)

Input shape: (None, 113,22) | Output shape: (Nene, 113, 22)

Input shape: [(None, 113, 22), (None, 113)] | Quiput shape: {None, 84}

dense {Dense)

Input shape: {(None, 64) | Cutput shape: (None, 10}

Figure 8. LSTM-based Neural Network model for VR dataset.

The model architecture begins with a masking layer that
handles padded values by ignoring them while learning,
ensuring that the model only processes relevant data. This
layer maintains the input shape of (None, 113, 22), where 113
represents the standardized sequence length and 22 denotes
the feature dimensions. The None indicates a variable batch
size. The model's core is the LSTM layer, specifically
designed to capture the temporal dependencies in the
sequential gesture data. The input shape for this layer remains
(None, 113, 22), and an additional input (None, 113)
represents the mask applied to the sequence. It outputs a
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Figure 9. Training and validation accuracy and loss with zero padding.
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reduced representation with 64 features, highlighting the most
significant aspects of the data across the 113 time steps.
Finally, the dense layer aggregates the information extracted
by the LSTM layer, outputting a 10-dimensional vector, where
each dimension corresponds to the 10 different hand sign
movements during training. This structure ensures the model
can effectively classify the input sequences into the correct
hand gesture categories.

The LSTM-based model was trained on 800 VR hand
gesture samples, with 200 samples reserved for validation.
Figures 9 and 10 show the model’s performance using
different padding techniques.

For the zero padding technique (Figure 9), the model
demonstrated alignment between training and validation
accuracy, indicating effective learning with minimal
overfitting. The final accuracy confirmed the model's
capability to interpret zero-padded data consistently. Pre-zero
padding achieved 0.58 wvalidation accuracy, indicating
baseline effectiveness but challenges in maintaining data
integrity. Post-zero padding yielded 0.55 accuracy, with
minimal impact from the padding position but some
inconsistency in data representation. Pre- and post-zero
padding was the top-performing zero padding method, with
0.99 accuracy, providing balanced data representation.

Replication padding (Figure 10) also produced promising
results, with accuracy and loss curves reflecting consistent
learning. This method allowed the model to generalize well
from the training data, highlighting the importance of selecting
appropriate padding techniques. Pre-replication padding
excelled with 0.97 accuracy, effectively preserving sequence
structure for better model learning. Post-replication padding
reached 0.73 accuracy, performing better than zero padding
but less effectively than Pre-replication Padding. Pre- and
post-replication padding showed strong results with 0.88
accuracy, demonstrating robustness in maintaining temporal
structure.
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Figure 10. Training and validation accuracy and loss with replication padding.

The trained LSTM-based model was comprehensively
evaluated using metrics like accuracy, precision, recall, F1
score, and confusion matrix analysis. These metrics provided
an overall assessment of the model's performance, helping to
identify its general effectiveness in interpreting VR hand
gestures.

Figure 11 shows the confusion matrix for the validation
dataset, illustrating how well the model predicted each hand
sign after training. The matrix indicates strong performance in
some categories but also reveals specific hand signs where the
model’s predictions were less accurate, suggesting potential
areas for further refinement.

validation Confusion Mtk for Pest Zero faclding

An additional 100 unseen data samples were tested to assess
the model's robustness. Figure 12 presents the confusion
matrix for this test dataset, reflecting the model's ability to
generalize to new data. These matrices help to understand the
model's performance across various categories.

Table 2 summarizes key performance metrics, including
accuracy, precision, recall, and F1 score, for both the
validation and test datasets. The table also includes an overall
ranking of the padding techniques based on these metrics,
offering insights into which methods were most effective in
ensuring accurate and consistent model performance.
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Figure 11. Confusion Matrix for validation dataset.
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Figure 12. Confusion Matrix for test dataset (100 new data).
TABLE II
AGGREGATE PERFORMANCE METRICS AND RANKING OF PADDING TECHNIQUES
Padding Technique Accuracy Precision Recall F1 score Overall Rank
Val. Test  Val Test Val. Test Val. Test  Val. Test
Pre-Replication Padding 0.97 099 098 099 097 099 098 099 2 1
Pre- and Post-Zero Padding 0.99 0.98 1.00 0.98 099 098 099 0098 1 2
Pre- and Post-Replication Padding  0.88 087  0.88 090  0.88 0.87 087 086 3 3
Post-Replication Padding 0.73 0.67 0.79 0.65 0.73 0.67 0.69 0.61 4 4
Pre-Zero Padding 0.58 0.53 0.53 0.50 0.58 0.53 0.55 0.51 6 5
Post-Zero Padding 0.55 050 0.66 057 055 0.50 0.53 0.49 5 6

The analysis of different padding techniques reveals notable
variations in performance metrics, including Accuracy,
Precision, Recall, and F1 Score, for both validation and test
datasets. These metrics provide a comprehensive view of how
each padding technique impacts model performance.

Pre-replication padding shows strong performance across
all metrics, achieving high scores in both validation and test
datasets. It ranks second in validation and first in the test
dataset, indicating its robust ability to generalize and maintain
a well-balanced model. The consistently high accuracy,
precision, recall, and F1 score suggest that this padding
technique minimizes misclassifications effectively and
performs reliably across different data splits.

In comparison, pre- and post-zero padding achieves
perfect precision and high recall in the validation dataset,
reflecting its strong performance in identifying positive cases
within this controlled environment. However, the technique’s
performance slightly drops in the test dataset. This decline
may be due to the inherent differences between the validation
and test data distributions, which can impact how well the
model generalizes to new data. Despite this drop, it remains

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.395

highly effective and ranks first in validation and second in the
test dataset.

Pre- and post-replication padding ranks third in both
datasets, showing stable but not exceptional performance.
Although it provides balanced metrics, its scores are lower
compared to the top two techniques. This suggests that while
it performs reliably, it does not reach the high levels of
accuracy and balance achieved by pre-replication and pre-
and post-zero padding.

Post-replication padding ranks fourth, with lower
accuracy and F1 score compared to the higher-ranked
techniques. This indicates a higher rate of misclassifications
and less effective performance overall. The lower metrics
suggest that this technique is less capable of managing
classification tasks with the same efficiency as the top
methods.

Pre-zero and post-zero padding exhibit the lowest
performance, ranking fifth and sixth, respectively. These
techniques show poorer accuracy, precision, and recall,
leading to higher misclassification rates. Their lower metrics
reflect their limited effectiveness in correctly identifying
positive cases and achieving balanced classification results.
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Choosing the appropriate padding technique is crucial for
optimizing model accuracy and generalization. The top
methods, pre-replication and pre- and post-zero padding
offer robust performance and balanced metrics, making them
suitable for effective model deployment. Conversely, the
lower-ranked techniques highlight areas where model
performance could be improved, suggesting their lesser
suitability for achieving optimal results.

IV. CONCLUSION

This research highlights the significant influence of padding
techniques on the performance of RNN models in interpreting
VR hand gesture data. Our findings reveal that selecting an
appropriate padding method can lead to substantial
improvements in model accuracy, precision, recall, and F1
score, even when utilizing simpler RNN architectures.
Specifically, techniques like pre-replication padding and pre-
and post-zero padding demonstrate superior effectiveness.
Pre-replication  padding  consistently  delivers  high
performance across all evaluation metrics, maintaining robust
accuracy and generalization on both validation and test
datasets. Meanwhile, pre- and post-zero padding shows
excellent results in the validation phase but exhibits a slight
reduction in performance during testing, indicating a potential
sensitivity to unseen data.

These results highlight the critical role of selecting
appropriate  padding techniques to optimize model
performance in sequence-based data processing. They
demonstrate that even with simpler RNN models, the use of
strategic padding can substantially enhance learning
efficiency and improve the model's ability to generalize from
training data to real-world applications. This emphasizes the
need for thoughtful preprocessing choices in the design of
sequence models to achieve robust and effective outcomes.

Looking ahead, future research could explore advanced
padding strategies to optimize model performance.
Investigating the interaction between innovative padding
methods and different RNN architectures could unlock
opportunities for greater accuracy and efficiency, leading to
more effective classification systems in VR and other
applications. These padding techniques enhance machine
learning models' performance and flexibility in complex VR
and real-life scenarios by standardizing data input, improving
robustness, optimizing computational efficiency, and enabling
cross-domain applications. They can significantly improve
applications like sign language to speech conversion by
ensuring consistent and accurate data processing, enabling
real-time translation of hand gestures captured in VR into
speech. This is crucial for developing assistive technologies
that empower individuals with speech impairments. As VR
technology evolves, these padding strategies will be essential
for creating more sophisticated, responsive, and adaptable
systems for real-world interactions. Continued refinement and
innovation in these techniques will drive the next generation
of immersive and accessible technologies.
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ABSTRACT This study focuses on addressing the challenges of processing hand sign data in Virtual Reality
environments, particularly the variability in data length during gesture recording. To optimize machine
learning models for gesture recognition, various padding techniques were implemented. The data was
gathered using the Meta Quest 2 device, consisting of 1,000 samples representing 10 American Sign
Language hand sign movements. The research applied different padding techniqincluding pre- and post-
zero padding as well as replication padding, to standardize sequence lengths. Long Short-Term Memory
networks were utilized for modeling, with the data split into 80% for training and 20% for validation. An
additional 100 unseen sfsfiples were used for testing. Among the techniques, pre-replication padding
produced the best results in terms of accuracy, precision, recall, and F1 score on the test dataset. Both pre-
and post-zero padding also demonstrated strong performance but were ouqerbrm ed by replication padding.
This study highlights the importance of padding techniques in optimizing the accuracy and generalizability
of machine learning models for hand sign recognition in Virtual Reality. The findings offer valuable insights
for developing more robust and efficient gesture recognition systems in interactive Virtual Reality
environments, enhancing user experiences and system reliability. Future work could explore extending these
techniques to other Virtual Reality interactions.

KEYWORDS Recurrent Neural Networks (RNNs), Sequential Data, Signal Processing.

L. INTRODUCTION

The development of Virtual Reality (VR) technology has
opened new opportunities in various fields [1], [2], including
education [3], [4], [5], rchabilitation [6], [7], [8], and the
development of applications for individuals with special needs
[9]. [10]. One promising application is hand sign interpretation
for communication with individuals who have speech
disabilities [11], [12], [13]. However, hand-sign data

language recognition [17], speech emotion recognition [18],
and padd modules [19] with neural network modeling, as
well as traffic flow prediction using Long Short-Term
MBERry (LSTM) models [20].

e novelty of this research lies in its application of padding
techniques to VR hand sign data, specifically addressing the
variation in data length generated during the data collection
process using sequential primary data recorded directly from

processing in a VR environment faces several challenges.
Specifically, the processing of hand sign data from VR devices
encounters difficulties, particularly concerning the variation in
data length generated during the recording process. Therefore,
in-depth research is needed to optimize the padding data
processing method to enhance hand sign interpretation
accuracy and efficiency.

Previous research has attempted to use VR technology to
assist individuals with speech disabilities through hand sign
interpretation. Some studies have used image datasets with
American Sign Language (ASL) [13], [14], [15] and
Malaysian Sign Language (MSL) [11]. Other research has
utilized triboelectric gloves that produce voltage graph
datasets [16]. Padding techniques are generally applied in
studies with sequential or graphical datasets, such as sign

m.I.IME 06, No 02, 2024 DOI: 10.52985/insyst.vE12.395

VR devices. While our previous similar studies [21] have
focused solely on post-zero padding with 28 parameters,
requiring more complex RNN models, this research employs
22 parameters, allowing for a simpler model architecture
without sacrificing effectiveness. This approach highlights the
trade-off between model complexity and parameter count,
demonstrating that a streamlined model can still achieve
efficient performance. The innovative use of padding
techniques in the context of VR hand sign data, which is
relatively new, offers a targeted solution for enhancing VR
applications and supporting individuals with speech
disabilities.
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Il. METHODS

The research process is divided into four mam stages, as
illustrated in Figure 1, Data Collection, Implementing Padding
Technique, Machine Learning Modeling, and Evaluation and
Testing. These stages ensure a comprehensive approach to
addressing the challenges of hand sign interpretation in a VR
environment.

Evaluation
and

Machine
Learning
Modeling

Bt Implementing

Padding

Collection TochHkE

Testing

Figure 1. Overview of research stages.

A. DATA COLLECTION

Primary data collection was conducted using the VR device
Meta Quest 2 [22], as shown in Figure 2. Ten types of hand
sign movements were collected based on ASL [23], [24], [25].
[26] and selected for their ease of use and compatibility with
VR devices. These signs, illustrated in Figure 3, were chosen
because they are common and straightforward, enswing the
VR system can accurately capture them. Each sign was
recorded with 100 samples, providing sufficient data for
analysis.

Figure 3.

10 Hand sign movements.
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Data collection was performed using an application
developed with Unity Editor [28], [29], as shown in Figure 4.
Each data recorded consists of 11 parameters each from the
left and right hand, iuclutm trigger touch, trigger pressed,
grip pressed, thumb touch, position (X, Y, Z), and quaternion
(W, X, Y, Z).

Figure 4.

VR data recording application.

B. IMPLEMENTING PADDING TECHNIQUES

Several padding methods were studied to understand how
to implement them in the context of VR hand gesture data.
Commonly used padding techniques, such as zero and
replication, are applied to balance the data length. Specifically,
variations like pre-zero, post-zero, pre- and post-zero, pre-
replication, post-replication, and pre- and post-replication
padding are explored. Figure 5 illustrates the explanation of
these padding techniques.
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The selected paddinggthods were applied to the collected
data and compared to identify the most effective approach for
managing data length variation. This process ensured
consistency and integrity in the machine learning workflow.
The goale evaluating different padding techniques was to
improve the accuracy and efficiency of machine-leaming
models for interpreting VR hand gestures.

C. MACHINE LEARNING MODELING

After the data has been processed using padding te ues,
machine learning models are developed and trained. The data
ivided into traming data (80%) and validation data (20%).
Recurrent Neural Networks (RNNs) with Long mrt-TcIm
Memory (LSTM) cells are utilized for modeling. LSTMs are
a specific typfm{NN that effectively handles sequential data
and captures long-range dependencies while mitigating the
vanishing gradient problem common in traditional RNNs [30],

[3

gne model is trained on the training dataset and its
performance is evaluated using the validation dataset. FLII‘E@
testing is conducted with new, unseen data to assess the
model’s effectiveness in real-world scenarios.

D. EVALUATION AND TEE‘NG

Thoroughly evaluating the performance of the trained
model, several evaluation metrics were employed, including
accuracy, precision, recall, F1 score, and confusion matrix
analysis [32]. These metrics provided a comprehensive view
of the model’s performance, identifying areas where it
excelled and where further improvements were needed.

To further validate the robustness of the model, an
additional 100 new data samples were collected. These

Ill. RESULT AND DISCUSSION

The data collection phase successfully yielded 1,000
samples, evenly distributed across 10 selected ASL hand signs
(https://github.com/umarutad/SignLanguage MTC Data/tree
/main/new_american_sign_language). Each sign contributed
an equal number of samples, ensuring a balanced dataset for
further analysis. Figure 6 presents an example from the
collected data, highlighting the 11 parameters that define each
hand sign.

The overall graphs shown in Figure 6 illustrate the
recordings of a specific hand sign movement, the horizontal
axis of these graphs denotes the n-th Unity sampling, while the
vertical axis values correspond to various sensor readings [28].
The data is organized into graphs labeled from Sensor 0 to
Sensor 21, with a detailed explanation of the 11 parameters
provided in Table 1.

The application of various padding strategies played a
significant role in addressing the challenge of varying data
lengths in VR hand gesture datasets. The variations of zero and
replication padding techniques were systematically applied to
the dataset. The results of these padding implementations, as
depicted in Figure 7, show how the raw data in Figure 6 was
transformed into a consistent format across all samples. This
uniformity was essential in preserving the data's structural
integrity and ensuring that the machine learning algorithms
could process the data without being influenced by
inconsistencies in sequence length.

TABLE1
SENSOR DATA PARAMETERS

Left Hand Right Hand Parameter Vertical Axis Value
Sensor 0 Sensor 11 Trigger Touch Boolean: 0 or 1

N X Sensor 1 Sensor 12 Trigger Pressed  Boolean: 0 or 1
samples, which the model had not previously encountered, Sensor 2 Sensor 13 Grip Pressed Boolean: 0 or 1
were used to test its performance on unseen data. This step was Sensor 3 Sensor 14 Thumb Touch Boolean: 0 or 1
crucial in determining the model’s real-world applicability and Sensor 4 Sensor 15 Position X Meter (m)
curing that it 1d ali ffectively b d the intial Sensor 5 Sensor 16 Position Y Meter (m)
cnsuring 1 could generahize CHECUVELY beyon ¢ Inma Sensor 6 Sensor 17 Position 7 Meter (m)
dataset. Sensor 7 Sensor 18 Quatemion W Scalar
The evaluation process, therefore, not only confirmed the Sensor 8§ Sensor 19 Quatemion X Vector
model's effectiveness but also guided subsequent refinement Sensor 9 Sensor20  Quatemion Y Vector
s ek N v . . Sensor 10 Sensor 21 Quatemion Z WVector
and optimization efforts, ensuring a reliable and efficient
solution for interpreting VR hand gestures.
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Example of ASL “Good" data with 22 parameters.
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Examples of VR hand gesture data after applying various padding techniques.
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The LSTM-based neural network model, shown in Figure
8, was designed to process the sequential hand gesture data
captured in the VR environment. After applying padding
techniques, the sequence length was standardized to match the
maximum Unity sampling length, which in this case was set
to 113 time steps. Each time step in the sequence contains 22
feature dimensions, corresponding to the 22 parameters
recorded from both hands during gesture performance.

masking (Masking)

Input shape: (None, 113, 22) | Output shape: (None, 113, 22)

Input shape: [(Mone, 113, 22), (None, 113)] | Output shape: (None, 64)

dense (Dense)

Input shape: (None, 64) | Output shape: (None, 10)

Figure 8. LSTM-based Neural Network model for VR dataset.

The model architecture begins with a masking layer that
handles padded values by ignoring them while learning,
ensuring that the model only processes relevant data. This
layer maintains the input shape of (None, 113, 22), where 113
represents the standardized sequence length and 22 denotes
the feature dimensions. The None indicates a variable batch
size. The del's core is the LSTM layer, specifically
designed to capture the temporal dependencies m the
sequential gesture data. The input shape for this layer remains
(None, 113, 22), and an additional input (None, 113)
represents the mask applied to the sequence. It outputs a

Figure 9. Eralni ng and validation accuracy and loss with zero padding.
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reduced representation with 64 features, highlighting the most
significant aspects of the data across the 113 time steps.
Finally, the dense layer aggregates the information extracted
by the LSTM layer, outputting a 10-dimensional vector, where
each dimension corresponds to the 10 different hand sign
movements during training. This structure ensures the model
can effectively classify the input sequences into the correct
hand gesture categories.

The LSTM-based model was tramed on 800 VR hand
gesture samples, with 200 samples reserved for validation.
Figures 9 and 10 show the model’s performance using
different padding techniques.

For the zero padding technique (Figure 9), the model
demonstrated alignment between training and wvalidation
accuracy, indicating effective learning with minimal
overfitting. The final accuracy confirmed the model's
capability to interpret zero-padded data consistently. Pre-zero
padding achieved 0.58 wvalidation accuracy, indicating
baseline effectiveness but challenges in maintaining data
integrity. Post-zero padding yielded 0.55 accuracy, with
minimal impact from the padding position but some
inconsistency in data representation. Pre- and post-zero
padding was the top-performing zero padding method, with
0.99 accuracy, providing balanced data representation.

Replication padding (Figure 10) also produced promising
results, with accuracy and loss curves reflecting consistent
learning. This method allowed the model to generalize well
from the training data, highlighting the importance of selecting
appropriate padding techniques. Pre-replication padding
excelled with 0.97 accuracy, effectively preserving sequence
structure for better model leaming. Post-replication padding
reached (.73 accuracy, performing better than zero padding
but less effectively than Pre-replication Padding. Pre- and
post-replication padding showed strong results with (.88
accuracy, demonstrating robustness in maintaining temporal
structure.
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Eig ure 10.  Training and validation accuracy and loss with replication padding.
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The traned LSTM-based gode] was comprehensively
evaluated using metrics like accuracy. precision, recall, F1
score, and confusion r@x analysis. These metrics provided
an overall assessment of the model's performance, helping to
identify its general effectiveness in interpreting VR hand
gestures.

Figure 11 shows the confusion matrix for the validation
dataset, illustrating how well the model predicted each hand
sign after training. The matrix indicates strong performance in
some categories but also reveals specific hand signs where the
model’s predictions were less accurate, suggesting potential
areas for further refinement.

An additional 100 unseen data samples were tested to assess
the model's robustness. Figure 12 p@nts the confusion
matrix for this test dataset, reflecting the cl's ability to
generalize to new data. These matrices help to understand the
model's performance across us categories.

Table 2 summarizes key performance metrics, including
accuracy, precision, recall, and F1 score, for both the
validation and test datasets. The table also includes an overall
ranking of the padding techniques based on these metrics,
offering insights into which methods were most effective in
ensuring accurate and consistent model performance.
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Test Confusion Matrix for Pre-Zero Padding
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Figure 12. Confusion Matrix for test dataset (100 new data).
TABLEIL
AGGREGATE PERFORMANCE METRICS AND RANKING OF PADDING TECHNIQUES
. . ceura Precision Recall F1 score Overall Rank
Eadding Tolniqes & th Val. Test Val. Test  Val. Test Val. Test
Pre-Replication Padding 097 099 098 099 097 099 098 P99 2 1
Pre- and Post-Zero Padding 099 098 100 098 099 098 099 098 1 2
Pre- and Post-Replication Padding  0.88 087 088 090 088 087 087 086 3 3
Post-Replication Padding 0.73 0.67 079 065 0.73 067 069 0.61 4 4
Pre-Zero Padding 0.58 (.53 0.53 0.50  0.58 0.53 0.55 0.51 6 5
Post-Zero Padding 0.55 @50 066 AT 0535 050 053 0.49 5 3]

The analysis of different padding techniques reveals notable
variations in performance metrics, including Accuracy,
Precisior%mall, and F1 Score, for both validation and test
datasets.
each padding technique impacts model performance.

Pre-replication padding shows strong performance across
all metrics, achieving high scores in both validation and test
datasets. It ranks second in validation and first in the test
dataset, indicating its robust ability to gcncralﬁlld maintain
a well-balanced model. The consistently high accuracy,
precision, recall, and F1 score suggest that this padding
technique minimizes misclassifications effectively and
performs reliably across different data splits.

In comparison, pre- and post-zero padding achieves
perfect precision and high recall in the validation dataset,
reflecting its strong performance in identifying positive cases

ese metrics provide a comprehensive view of how

within this controlled environment. However, the technique’s
performance slightly drops in the test dataset. This decline
may be due to the inherent differences between the validation
and test data distributions, which can impact how well the
model generalizes to new data. Despite this drop, it remains

ﬁUME 08, No 02, 2024 DOI: 10.52985/insyst.vE12.395

highly effective and ranks first in validation and second in the
test dataset.

Pre- and post-replication padding ranks third in both
datasets, showing stable but not exceptional performance.
Although it provides balanced metrics, its scores are lower
compared to the top two techniques. This suggests that while
it performs reliably, it does not reach the high levels of
accuracy and balance achieved by pre-replication and pre-
and post-zero padding.

Post-replication padding ranks fourth, with lower
accuracy and Fl score compared to the higher-ranked
techniques. This indicates a higher rate of misclassifications
and less effective performance overall. The lower metrics
suggest that this technique is less capable of managing
classification tasks with the same efficiency as the top
methods.

Pre-zero and post-zero padding exhibit the lowest
performance, ranking fifth and sixth, respectively. These
techniques show poorer accuracy, precision, and recall,
leading to higher misclassification rates. Their lower metrics
reflect their limited effectiveness in correctly identifying
positive cases and achieving balanced classification results.
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Choosing the appropriate padding technique is crucial for
optimizing model accuracy and generalization. The top
methods, pre-replication and pre- and post-zero padding
offer robust performance and balanced metrics, making them
suitable for effective model deployment. Conversely, the
lower-ranked techniques highlight areas
performance could be improved, suggesting their lesser
suitability for achieving optimal results.

where model

IV. CONCLUSION .
22

This research highlights the significant influence of padding
techniques on the performance of RNN models in interpreting
VR hand gesture data. Our findings reveal that selecting an
appropriate padding method can lead to substantial
improvements in model accuracy, precision, recall, and F1
score, even when utilizing simpler RNN architectures.
Specifically, techniques like pre-replication padding and pre-
and post-zero padding demonstrate superior effectiveness.
Pre-replication  padding consistently  delivers  high
performance across all evaluation metrics, maintaining robust
accuracy and generalization on both validation and test
datasets. Meanwhile, pre- and post-zero padding shows
excellent results in the validation phase but exhibits a slight
reduction in performance during testing, indicating a potential
sensitivity to unseen data.

These results highlight the critical role of selecting
appropriate  padding techniques to optimize model
performance in sequence-based data processing. They
demonstrate that even with simpler RNN models, the use of
strategic pa can substantially enhance leaming
efficiency and improve the model's ability to generalize from
training data to real-world applications. This emphasizes the
need for thoughtful preprocessing choices in the design of
sequence models to achieve robust and effective outcomes.

Looking ahead, future research could explore advanced
padding strategies to optimize model performance.
Investigating the interaction between innovative padding
methods and different RNN architectures could unlock
opportunities for greater accuracy and efficiency, leading to
more effective classification systems in VR and other
applications. These padding techniques enhance machine
learning models' performance and flexibility in complex VR
and real-life scenarios by standardizing data input, improving
robustness, optimizing computational efficiency, and enabling
cross-domain applications. They can significantly improve
applications like sign language to speech conversion by
ensuring consistent and accurate data processing, enabling
real-time translation of hand gestures captured in VR into
speech. This is crucial for developing assistive technologies
that empower individuals with speech impairments. As VR
technology evolves, these padding strategies will be essential
for creating more sophisticated, responsive, and adaptable
systems for real-world interactions. Continued refinement and
innovation in these techniques will drive the next generation
of immersive and accessible technologies.
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