MOTION TRANSLATOR

Aplikasi ini dibangun dengan menggunakan Unity Editor, suatu aplikasi antarmuka
pengguna yang terhubung dengan perangkat Virtual Reality Meta Quest 2, sebagai
media perantara untuk merekam data gerakan isyarat tangan. Tampilan pada headset
Meta Quest 2 ditunjukkan pada Gambar 1.

Left Controller Right Controller

Gambar 1. Antarmuka Pengguna

Sensor yang diterapkan teridiri dari 28 parameter masukan (tangan kiri dan kanan)

yang berubah-ubah pada saat dilakukan gerakan isyarat tangan, seperti tampak pada
Gambar 2.

Irigger louch Faise Ingger fouch False
Trigger Pressed False Trigger Pressed False
Grip Pressed 0 (thnp pl,eTsse(:\ g :
N I E humb Touc alse
Thum'b i -0.1085451 Pos X 0.1149335
1.451691 Pos Y 1.478133
0.4732819 Pos Z 0.4425824
0.003083471 Vel X -0.0120756745116?
0.06775059 Vel Y 0.

-0.06230508 Vel Z — (_)05?;:32:;,051?8
0.4793682 Quaterni e

-0.5976444 Quaternion X

794 Quaternion Y
006(2102%611558 Quaternion Z

Gambar 2. Parameter Isyarat Tangan

Hasil perekaman data yang berupa grafik seperti contoh pada Gambar 3. Setiap data
terdiri dari 14 parameter dari tangan Kiri dan 14 parameter lagi dari tangan kanan
dengan parameter Trigger Touch, Trigger Pressed, Grip Pressed, Thumb Touch,
Position (X, Y, Z), Velocity (X, Y, Z), Quaternion (W, X, Y, 2).

Dalam kode program ditambahkan formula sehingga dapat dipastikan bahwa data
yang terkumpul bersifat relatif terhadap headset. Pemadanan ini bertujuan untuk
mencegah gerakan tangan memengaruhi rotasi tubuh, dengan jelas mencerminkan
arah wajah pengguna tanpa menyebabkan interferensi. Proses ini melibatkan
modifikasi lokasi titik pusat dan rotasi global berdasarkan orientasi headset.

4 5 6 7
== = 0 2 20 LA Ly e L L e
0050 0050 0.050 0050 0.02 . 5 01 i 5
X 0.
T 0025 0.025 0.025 0.025 01 2 00 =06 -01
© 0.00 0.2 -0.4
T 0000 {—{ 0000+— 0.0001— 0.000 +— 0.84 025 00 01 -0.1
G ' 02 -0.8 00 -0.2 -06
Y 0025 -0.025 -0.025 -0.025 00 i 00 =
3 020 -0.1 -03 -08
-0.050 ~0.050 -0.050 -0.050 - 024 LA L)
025 025 025 025 025 025 025 025 025 025 0 025 025 025
0 1 2 3 4 5 6 7 8 9
0050{] 00s0{] 00s0{] 10047] - 1 041 1 15 7l Kl . 02
0.250 i 0z LU 0.2
2 oo 0.025 0.025 075 03 L0 2 =025
s 0.225 e -03 e
10 0.0 05 ™
0,000 +—— 0000 +— 0.000 +— 050 -0.50
£ 0.200 02 0 04 i
2 _0.025 -0.025 -0.025 025 09 00 -0.75 02
= 0175 e 02 05
01 ’ -05 -1 -
=0.0501_,1-0.0501__1-00501] 000{ o A — o b — = o004 -1004+— — -0.44—
025 025 025 025 025 025 025 025 025 025 025 2 025 025

Gambar 3. Contoh Hasil Perekaman Data

Aplikasi dilengkapi fasilitas isian teks dan memberikan label pada data yang akan
direkam, disajikan pada Gambar 4.

Gambar 4. Isian Teks untuk Label Data

Pada Gambar 5 tampak proses perekaman data dengan melakukan gerakan isyarat
tertentu sesuai dengan keperluan.

Gambar 5. Proses Perekaman Data
Berikut ini adalah kode utama program.

using System;
using System.Collections;

using System.Net.Http;
using System.Collections.Generic;
using UnityEngine;

using UnityEngine. XR;
using TMPro;

using Newtonsoft.Json;
using UnityEngine.Ul,
using Newtonsoft.Json.Ling;

namespace MotionTranslator {

[RequireComponent(typeof(VRInput))]
public class RecordingStatus : MonoBehaviour

{

public TMP_InputField textField;

public TMP_InputField labelField;

public TextMeshProUGUI content;

public TextMeshProUGUI countClassText;
public TextMeshProUGUI recordingText;
public TextMeshProUGUI statusText;
public TextMeshProUGUI dataCountText;
public Button cancelButton;

public Button sendToNetworkButton;
public Button popLastElementButton;

private List<List<float>> tempLeftControllerRecordData;
private List<List<float>> tempRightControllerRecordData;

private VRInput _controller;
private bool _recording;
private bool _prevButtonState;
private bool _cancelling;

private List<object> dataToSendThroughNetwork;
private String _previousClassValue ="";

private String _currentClassValue = "";

private int _countClassValue = 0;

/[Start is called before the first frame update
void Start()
{
_recording = false;
_cancelling = false;
_prevButtonState = false;
_tempLeftControllerRecordData = new List<List<float>>();
_tempRightControllerRecordData = new List<List<float>>();

_dataToSendThroughNetwork = new List<object>();

_controller = GetComponent<VRInput>();

if (cancelButton == null)

{
k

initializeListener();

cancelButton = GetComponent<Button>();

¥

/l Update is called once per frame
void Update()

if(_controller._rightController.isValid){
CheckRecordingButton();
}

if(_recording){
ShowRecordingMessage();
RecordControllerData();
ShowCancelButton();
Yelse{
if((_tempLeftControllerRecordData.Count > 0 &&
_tempRightControllerRecordData.Count > 0) && ! _cancelling){
addRecordControllerDataToL.ist();
_tempLeftControllerRecordData.Clear();
_tempRightControllerRecordData.Clear();
ShowClassCount();

ky

if(_dataToSendThroughNetwork.Count > 0)

{
ShowSendToNetworkButtonAndCountMessage();

ky

else

{
HideSendToNetworkButtonAndCountMessage();

}
ShowNotRecordingMessage();
HideCancelButton();

ky
¥

void initializeListener()

{
cancelButton.onClick.AddListener(HandleCancleButtonClick);
sendToNetworkButton.onClick.AddListener(HandleSendThroughNetwork);

popLastElementButton.onClick.AddListener(HandlePopLastElement);
}

void HandleCancleButtonClick()
{

_cancelling = true;

_recording = false;
_tempLeftControllerRecordData.Clear();
_tempRightControllerRecordData.Clear();
statusText.text = "Record Cancelled.";
_cancelling = false;

¥

void HandlePopLastElement()

if (_dataToSendThroughNetwork.Count > 0)
{

_dataToSendThroughNetwork.RemoveAt(_dataToSendThroughNetwork.Count - 1);
/I Remove the last element

k
¥

void ShowCancelButton()

{
k

void HideCancelButton()
{

ky

void ShowSendToNetworkButtonAndCountMessage()
{
sendToNetworkButton.gameObject.SetActive(true);
dataCountText.text = "Data Count : " +
_dataToSendThroughNetwork.Count. ToString();

ky

void HideSendToNetworkButtonAndCountMessage()

{
sendToNetworkButton.gameObject.SetActive(false);

dataCountText.text =""
}

cancelButton.gameObject.SetActive(true);

cancelButton.gameObject.SetActive(false);

void CheckRecordingButton()
{

bool currentButtonState = _controller.rightController.getSecondaryButton();
if (currentButtonState && ! prevButtonState){

I Flip switch

_recording =!_recording;

ky

_prevButtonState = currentButtonState;

¥

void ShowRecordingMessage()

{

recordingText.text = "Recording...";
content.text = "Text : " + textField.text;

¥

void ShowNotRecordingMessage()
{

recordingText.text = "Not Recording...";
content.text = "Text : ";

¥

void ShowClassCount()
{

_currentClassValue = labelField.text;
if (_currentClassValue != _previousClassValue)

{

_previousClassValue = _currentClassValue;
_countClassValue =1,

ky

else

{

_countClassValue++;

ky

countClassText.text = currentClassValue + " :
_countClassValue. ToString();

ky

void RecordControllerData()

{

Controller vrHeadset = _controller. HMD;

/I Get the headset's position and rotation

Vector3 headsetPosition = vrHeadset.getPosition();
Quaternion headsetRotation = vrHeadset.getRotation();
Vector3 headsetVelocity = vrHeadset.getVelocity();

/I Get the positions, velocities, and rotations of the left and right controllers
Vector3 leftPosition = _controller.leftController.getPosition();

Vector3 leftVelocity = _controller.leftController.getVelocity();

Quaternion leftQuaternion = _controller.leftController.getRotation();

Vector3 rightPosition = _controller.rightController.getPosition();
Vector3 rightVelocity = _controller.rightController.getVelocity();
Quaternion rightQuaternion = _controller.rightController.getRotation();

/I Transform controller data relative to headset

Vectord transformedLeftPosition = headsetRotation * (leftPosition -
headsetPosition);

Vector3 transformedRightPosition = headsetRotation * (rightPosition -
headsetPosition);

Quaternion transformedLeftRotation = Quaternion.Inverse(headsetRotation) *
leftQuaternion;

Quaternion transformedRightRotation = Quaternion.Inverse(headsetRotation)
* rightQuaternion;

Vector3 transformedLeftVelocity = leftVelocity - headsetVelocity;
Vector3 transformedRightVelocity = rightVelocity - headsetVelocity;

_tempLeftControllerRecordData.Add(new List<float> {
_controller.leftController.getTriggerTouch() ? 1.0f : 0.0f,
_controller.leftController.getTriggerButton() ? 1.0f : 0.0f,
_controller.leftController.getGrip(),
_controller.leftController.getThumbTouch() ? 1.0f : 0.0f,
transformedLeftPosition.x,
transformedLeftPosition.y,
transformedLeftPosition.z,
transformedLeftVelocity.x,
transformedLeftVelocity.y,
transformedLeftVelocity.z,
transformedLeftRotation.w,
transformedLeftRotation.x,
transformedLeftRotation.y,
transformedLeftRotation.z

hok

_tempRightControllerRecordData.Add(new List<float> {
_controller.rightController.getTriggerTouch() ? 1.0f : 0.0f,
_controller.rightController.getTriggerButton() ? 1.0f : 0.0f,
_controller.rightController.getGrip(),
_controller.rightController.getThumbTouch() ? 1.0f : 0.0f,
transformedRightPosition.x,
transformedRightPosition.y,
transformedRightPosition.z,
transformedRightVelocity.x,
transformedRightVelocity.y,
transformedRightVelocity.z,
transformedRightRotation.w,
transformedRightRotation.x,
transformedRightRotation.y,
transformedRightRotation.z

b

}

void addRecordControllerDataToL.ist()
{

List < List<float> > _leftControllerRecordData = new
List<List<float>>(_tempLeftControllerRecordData);
List < List<float> > _rightControllerRecordData = new
List<List<float>>(_tempRightControllerRecordData);
var jsonObject = new
{
table = "data_basic_asl",
classValue = labelField.text,
text = textField.text,
data = new
{
_leftControllerRecordData,
_rightControllerRecordData

1

_dataToSendThroughNetwork.Add(jsonObject);
}

void HandleSendThroughNetwork()

{
statusText.text = "Sending Record Data Through Network...";

var jsonSender = new JsonSender();

string url = "http://127.0.0.1:5000/api/store";

try{
HttpResponseMessage response = jsonSender.SendJson(url,

_dataToSendThroughNetwork);

if(response == null){
statusText.text = "Failed to send JSON data™;
return;

ky

if(response.lsSuccessStatusCode){
statusText.text = "Record has been sent successfully!";
_dataToSendThroughNetwork.Clear();

Yelse{
statusText.text = "Failed to send JSON data™;

}
}catch(Exception ex){

statusText.text = $"Error sending JSON data : {ex.Message}";

