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Abstract— The increasing load and the decreasing 

availability of non-renewable energy sources have encouraged 

the development of renewable energy utilization. This 

condition increases the complexity of the power system. 

Distributed generator (DG) connection causes a significant 

change in power flow. On the other hand, the load on the 

power system is dynamic, so it is necessary to adjust the power 

generation. Proper scheduling of generating units to improve 

the reliability of the power system is crucial. Scheduling 

optimization is the key in power system operation planning and 

control to achieve optimal power system operation, with 

minimal cost and power loss. This paper presents the 

optimization of generating unit scheduling by applying the 

Adaptive Modified Firefly Algorithm (AMFA). The 

performance of AMFA in optimizing generator scheduling for 

minimal generation costs and power losses is tested by using a 

modified IEEE 30-bus system. The simulation results show that 

AMFA has a better performance than the firefly algorithm 

(FA), with a convergence speed of 4 times faster. Additionally 

of optimization by applying a distributed generator shows an 

improvement in the condition of the bus voltage in the system, 

lower costs, and power losses. In a system without DG which is 

loaded with 130% baseload, the optimization results indicate 

that 67% of the buses are under voltage, the generation cost is 

1458.702 $/hour and the power loss is 23.345 MW. The 

integration of DG into the system is able to improve the system 

where only 3% of the buses are under voltage, the cost of 

generating 1143.111 $/hour, and power loss 1333.521 MW. 

Keywords—modified firefly, scheduling, distributed 

generation, optimization, power flow 

I. INTRODUCTION  

A good electric power system must meet several 
requirements including reliability, quality, stability, and 
resilient. Monitoring, controlling, and planning fare needed 
to meet the power operation requirement. Moreover, it is 
necessary to adjust the generator side in providing power 
supply to the system in order to obtain efficiency in its 
operation with considering dynamic load. Scheduling 
generating units is a key issue on the power system operation 
[1] and needed to realize optimal power system operational 
conditions in terms of resources and costs [2].  

An increasing load on the electric power system and 
decreasing non-renewable energy reserves have led to a 
growth in the use of renewable energy sources [3]. The 
potential for renewable energy is generally not too large and 
spread over a wide area. These conditions encourage the 
development of a distributed generation (DG) system to meet 
load requirements and increase system reliability [4]. The 
connection of DG tends to the power system more complex 
in its operation and control. Inappropriate generation unit 
scheduling causes higher power losses [5]. Scheduling 
problems can be modeled in mathematical programming to 
get the most appropriate generation settings from each 
generating unit [6].  

In reference [7], the firefly algorithm (FA) sets the 
ON/OFF status and the lambda iterations determine the 
power generated by each generating unit. The firefly 
algorithm has better performance than the Integer Coded 
Genetic Algorithm ICGA [8], Shuffled Frog Leaping 
Algorithm (SFLA) [9], and Extended Priority List (EPL) 
[10]. This is indicated by the minimum cost when 
implemented in optimization of 10, 20, and 40 generating 
units. The hybrid method of priority list (PL) and modified 
firefly (M-FA) has been applied to solve the unit 
commitment problem. The first step is to determine the 
active generating unit based on PL. The second step, M-FA 
calculates the power of each active generator unit [11]. 

The firefly algorithm (FA) can be explained that the 
position of the individual firefly consists of the current 
position, movement towards a brighter firefly, and random 
movement. The random movement component has the 
potential to slow down the achievement of the final position 
according to the objective functions in the optimization.  

This paper discusses the optimization of generating unit 
scheduling using the Adaptive Modified Firefly Algorithm 
(AMFA). This modification is an adjustment of the random 
movement components along with the iteration process to 
reduce the optimization process and calculation time 
simultaneously. AMFA’s performance was tested by 
optimizing the generating unit scheduling of the modified 
IEEE 30-bus system. Load variations are 100%, 120%, and 
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130% of the baseload 242.55 MW. The performance 
parameter is the speed of convergence, generating cost, and 
power loss. In addition, how the DG installation affects the 
performance.  

II. MATHEMATICAL MODEL 

A. Thermal Generator Input-Output Equivalence 

In meeting the power requirements of the load, a power 
system has n generators is required to determine the amount 
of generation for each generator. The power generation 
affects the fuel costs of each generating unit in the form of 
the input-output equivalence equation. An i-th generating 
unit has the fuel cost (Fi) as a function of the power 
generation (Pi) [12]. 

 2
iiiiiii ) .(Pc+.Pb+a=)(PF  (1) 

Where ai, bi, ci are i-th input-output coefficients. 

The total fuel cost (Ft) for the n generating units in the 
power system is the sum of the fuel costs for each generator 
in the system. 

  =

n

1i it F=F  (2) 

B. Thermal Generator Constraint  

There are several constraints in determining the power 
generation for a generating unit. The power requirements 
(PD) in the system must be agreed with total power 
generation. This is the first constraint. 

 D

n

1i i PP = =
 (3) 

As shown in Fig. 1, the generation of power determines 
the fuel costs and efficiency of the generating unit [3]. High 
efficiency occurs when the generation ranges between Pmin 
and Pmax which in that range has a low heat rate, as the 
second constraint. It can be formulated as below, 

 
maxmin iii PPP ≤≤  (4) 

III. OPTIMIZATION ALGORITHM 

The firefly algorithm is a metaheuristic method 
developed by Xin Zhe Yang which is inspired by the 
behavior of fireflies based on 3 things [13]. First, fireflies are 
unisex. Second, the individual attraction is proportional to 
the brightness level. Fireflies have a higher brightness attract 
the less bright ones to move closer. When there is no 
difference in brightness, the movement is random. And 
thirdly, the value of the objective function affects the 
brightness. 

A. AMFA 

The AMFA algorithm is carried out by adapting the 
random movement components and applied to each iteration 
[14]. The attractiveness of firefly i to other firefly j depends 

on the brightness (βO), the distance (r) and the light 
absorption coefficient (γ) between fireflies which is 
expressed by equation (5). 

 

 
Fig. 1. Heat rate and Efficiency of Thermal Power Generation Unit 
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The Cartesian distance (rij) between fireflies i at positions 
Xi and j at Xj is expressed in equation (6). 

 ( ) =
==

k

1m

2
mi,mj,jiij X-XX-Xr   (6) 

Where Xj,m is the k-th component of the spatial coordinate Xi 
of the i-th firefly. For the 2-dimensional case, the distance 
equation can be written as below, 

 ( ) ( )2
ji

2
jijiij Y-YX-XX-Xr +==   (7) 

The movement of the less bright firefly (Xi) towards the 
lighter firefly (Xj) is expressed as following equation, 

 iij
).r(-

0ii .)XX.(.eXX
m

εαβ γ
+−+=   (8) 

where ε is a random value in a Gaussian distribution. 

Based on equation (8), the movement of firefly has three 
components, namely the current position of the firefly (Xi), 
the movement towards a brighter firefly, and the random 
movement of a firefly with a range of (0,1). 

The random movement component can cause the 
movement of the fireflies to be disorganized and make a 
slowdown in convergence. Moreover, it can be trapped in the 
local optima. Based on the previous statement, modifying the 
firefly algorithm is necessary to reduce the random 
movement component. The attenuation of the random 
movement is done by adjusting the value of the parameter α 
along with the iteration (k). Adaptive random movement can 
be expressed as following equation [14], 

 
1k

1

max
k1k maxk

2

1
.=

++








αα  (9) 

B. Optimization of Generating Unit Scheduling 

The electric power system must be able to adjust the 
power generation when load changes occur. It is done by 
adjusting the scheduling of the generating unit. Optimization 
of generating unit scheduling is to obtain optimal operation 
in the term of lowest generation cost. AMFA steps are shown 
in the pseudo-code of Fig. 2. 
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Read system data 

Objective function f(p), p=(p1,p2,...,pd) 

Create an initial population of fireflies pi (i=1,2,...n) 

The light intensity Ii on pi determine by f(pi) 

Setting a light absorption coefficient γ 

Setting a randomize movement coefficient α 

While (t<maximum iteration) 

For i=1:n all n fireflies 

 For j=1:n all n fireflies 

  If (Ij>Ii), firefly i to j in d dimension; end if 

   Variation appeal to the distance r through exp[-γr] 

   Update value of alfa through reduction with U of each iteration 

   Evaluation of new solutions and update light intensity 

 End for j 

End for i 

Run power flow analysis using Newton Raphson 
Calculate generation cost and power loss 

Arrange fireflies and find the best currently 

End while 

Display the result of the process  
Fig. 2. Pseudo Code 

IV. MODIFIED IEEE 30-BUS POWER SYSTEM  

To evaluate AMFA performance, a modified IEEE 30-
bus system was used as the test system [15]. The system 
consists of 6 generating units as shown in Fig. 3. Units 1, 2, 
5, and 6 are thermal, while units 3 and 4 are non-thermal 
generating units as DG. Table I describes the details of the 
load distribution at each bus. The system load data is 242.55 
MW as the baseload. Table II describes the data of each 
generating unit in the system.  
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Fig. 3. IEEE 6 generator 30 bus systems 

TABLE I.  DISTRIBUTION OF LOAD ON EACH BUS FOR BASELOAD 

(242.55 MW AND 59.85 MVAR) 

Bus PLoad 

(MW) 

QLoad 

(MVAR) 

Bus PLoad 

 (MW) 

QLoad 

(MVAR) 

1 0.00 0.00 16 16.65 1.62 

2 4.50 0.90 17 12.60 5.22 

3 18.36 1.08 18 15.48 0.81 

4 14.04 1.44 19 13.05 3.06 

5 4.50 0.90 20 12.78 0.63 

6 0.00 0.00 21 21.15 10.08 

7 25.02 9.81 22 0.00 0.00 

8 0.00 0.00 23 8.28 1.44 

9 0.00 0.00 24 9.63 6.03 

10 18.72 1.80 25 0.00 0.00 

11 0.00 0.00 26 7.65 2.07 

12 14.58 6.75 27 0.00 0.00 

13 0.00 0.00 28 0.00 0.00 

14 5.58 1.44 29 6.66 0.81 

15 7.38 2.25 30 5.94 1.71 

TABLE II.  GENERATING UNIT DATA ON IEEE 30 BUS SYSTEM 

Generating 

Unit 
Bus 

Pmin 

(MW) 

Pmax 

(MW) 

Input output 

coefficient 

a b c 

1 1 50 200 0 3.25 0.01834 

2 2 50 150 0 3.00 0.03750 

3 5 75 100 0 1.75 0.00000 

4 8 10 35 0 1.75 0.00000 

5 11 10 30 0 3.15 0.02500 

6 13 50 100 0 3.10 0.02500 

V. RESULT AND DISCUSSION  

Optimization of generating units scheduling is performed 
with several loading conditions.  Loading varieties include 
100%, 120%, and 130% of the baseload. Optimization is 
carried out using the FA and AMFA methods and compared. 
Furthermore, the results are used as the value of power 
generation for each generating unit in power flow analysis 
using the Newton Raphson method. 

A. Case-1: Optimization of 4 Generating Units  

Case-1, the system load is 100%, 120%, and 130% of the 
baseload. The optimization process is limited to 2000 
iterations. The number of a scheduled generating units is 4 
units, where DG are not included. This simulation is intended 
to determine the performance of the FA and AMFA.  

The optimization convergence of both methods is shown 
in Fig. 4. The simulation result provides that AMFA is faster 
than FA, and a number of iterations is 137 and 861, 
respectively. Moreover, time calculations are 13.08 and 
84.59 seconds, respectively.  

For the 3 types of loading, the performance comparison 
both of methods is presented in Table III. There was an 
improvement in the optimization process with AMFA 
compared to FA. Iteration and computation time are reduced 
significantly and simultaneously. The percentage of iteration 
reduction and calculation time reduction is obtained by 
comparing the reduction that occurs when using AMFA 
against FA. 
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Fig. 4. Convergence of optimization process on scheduling for 4 
generating units of IEEE 30-bus standard system with 100% baseload 

TABLE III.  PERFORMANCE COMPARISON OF FA AND AMFA FOR 

CASE-1 

Load 

Number of 

Iteration 
% 

Iteration 

reduction 

Calculation time  

(seconds) 
%  

time 

reduction FA AMFA FA AMFA 

100 % 861 137 84.09 84.59 13.08 84.54 

120 % 177 79 55.37 17.11 7.62 55.46 

130 % 229 126 44.98 22.27 12.22 45.13 
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TABLE IV.  RESULT OF GENERATING UNITS SCHEDULING ON CASE-1, 
LOADING AT 100%, 120%, AND 130% OF BASELOAD. 

Load Para-meters 
Methods 

FA AMFA 

100% baseload 

Total Load (MW) 242.5500 242.5500 

Total Gen (MW) 253.2195 253.2162 

Total Loss (MW) 10.6695 10.6662 

Gen 1 (MW) 60.6695 60.6662 

Gen 2 (MW) 50.0001 50.0000 

Gen 3 (MW) 92.5499 92.4963 

Gen 4 (MW) - - 

Gen 5 (MW) - - 

Gen 6 (MW) 50.0000 50.0537 

Tot Cost ($/hour) 887.8944 888.0830 

Gen 1 ($/hour) 264.6814 264.6635 

Gen 2 ($/hour) 243.7506 243.7500 

Gen 3 ($/hour) 161.9623 161.8685 

Gen 4 ($/hour) - - 

Gen 5 ($/hour) - - 

Gen 6 ($/hour) 217.5000 217.8010 

120% baseload 

Total Load (MW) 296.4500 296.4500 

Total Gen (MW) 314.3318 314.3218 

Total Loss (MW) 17.8818 17.8718 

Gen 1 (MW) 100.6279 100.4466 

Gen 2 (MW) 50.0000 50.0006 

Gen 3 (MW) 100.0000 100.0000 

Gen 4 (MW) - - 

Gen 5 (MW) - - 

Gen 6 (MW) 63.7039 63.8747 

Tot Cost ($/hour) 1230.4378 1230.2578 

Gen 1 ($/hour) 512.7512 511.4930 

Gen 2 ($/hour) 243.7500 243.7540 

Gen 3 ($/hour) 175.0000 175.0000 

Gen 4 ($/hour) - - 

Gen 5 ($/hour) - - 

Gen 6 ($/hour) 298.9366 300.0107 

130% baseload  

Total Load (MW) 323.4000 323.4000 

Total Gen (MW) 346.7438 346.7450 

Total Loss (MW) 23.3438 23.3450 

Gen 1 (MW) 121.0041 121.0221 

Gen 2 (MW) 51.0954 51.0981 

Gen 3 (MW) 100.0000 100.0000 

Gen 4 (MW) - - 

Gen 5 (MW) - - 

Gen 6 (MW) 74.6443 74.6249 

Tot Cost ($/hour) 1458.6780 1458.7020 

Gen 1 ($/hour) 661.7974 661.9359 

Gen 2 ($/hour) 251.1888 251.2071 

Gen 3 ($/hour) 175.0000 175.0000 

Gen 4 ($/hour) - - 

Gen 5 ($/hour) - - 

Gen 6 ($/hour) 370.6917 370.5590 

 

The generation scheduling for case-1 is presented in 
Table IV. It is observed that AMFA is more optimal than FA 
with very small value differences. Improvements to the 
optimization of the objective function, which consists of total 
generation, total cost, and total loss, were not significant. 

The results of the power flow analysis are listed in Table 
V. It shows that the bus voltage profile is the same for both 
FA and AMFA algorithms. This proves that the 
modifications made have been able to improve performance 
while maintaining accuracy. It is observed that bus voltage 
less than IEEE standard 141-1986 using both methods are 1, 
18, and 20 buses for 100%, 120%, and 130% of based load, 
respectively. The voltage profile tends to be worse when the 
load increased. This condition is improved by DG in case-2. 

 

TABLE V.  RESULTS OF POWER FLOW ANALYSIS ON CASE-1 USING 

FA AND AMFA, LOADING AT 100%, 120%, AND 130 % OF THE BASELOAD 

Bus 

|V| (p.u) 

100 % baseload 120 % baseload 130 % baseload 

FA AMFA FA AMFA FA AMFA 

1 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 

2 1.0450 1.0450 1.0329 1.0329 1.0254 1.0254 

3 1.0029 1.0029 0.9747 0.9747 0.9571 0.9571 

4 0.9945 0.9946 0.9610 0.9611 0.9402 0.9402 

5 1.0173 1.0173 1.0100 1.0100 1.0100 1.0100 

6 0.9828 0.9829 0.9456 0.9456 0.9226 0.9226 

7 0.9850 0.9850 0.9572 0.9573 0.9424 0.9424 

8 0.9821 0.9821 0.9441 0.9442 0.9206 0.9206 

9 0.9488 0.9488 0.8892 0.8892 0.8492 0.8492 

10 0.9345 0.9345 0.8660 0.8661 0.8193 0.8193 

11 0.9488 0.9488 0.8892 0.8892 0.8492 0.8492 

12 0.9901 0.9902 0.9303 0.9304 0.8888 0.8888 

13 1.0365 1.0365 0.9774 0.9775 0.9357 0.9357 

14 0.9675 0.9675 0.9009 0.9009 0.8548 0.8548 

15 0.9501 0.9502 0.8785 0.8786 0.8289 0.8288 

16 0.9503 0.9503 0.8811 0.8811 0.8334 0.8334 

17 0.9328 0.9328 0.8619 0.8619 0.8134 0.8134 

18 0.9154 0.9154 0.8340 0.8341 0.7778 0.7778 

19 0.9075 0.9075 0.8252 0.8252 0.7686 0.7686 

20 0.9105 0.9105 0.8302 0.8303 0.7751 0.7751 

21 0.9212 0.9213 0.8481 0.8481 0.7983 0.7983 

22 0.9222 0.9222 0.8493 0.8493 0.7997 0.7997 

23 0.9276 0.9276 0.8514 0.8515 0.7991 0.7990 

24 0.9139 0.9139 0.8373 0.8373 0.7851 0.7851 

25 0.9236 0.9236 0.8535 0.8535 0.8060 0.8060 

26 0.8926 0.8926 0.8116 0.8116 0.7568 0.7568 

27 0.9443 0.9443 0.8837 0.8838 0.8430 0.8430 

28 0.9755 0.9755 0.9343 0.9343 0.9084 0.9084 

29 0.9208 0.9208 0.8524 0.8524 0.8066 0.8066 

30 0.9169 0.9170 0.8473 0.8473 0.8007 0.8007 
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Fig. 5. Convergence of optimization process on scheduling for 6 
generating units of IEEE 30-bus standard system with 130% baseload 

B. Case-2: Optimization of 6 Generating Units 

Case-2, the number of a scheduled generating units is 6 
units, where DG are included. The system load is 100%, 
120%, and 130% of baseload. The optimization process is 
limited to 1000 iterations. This simulation is to examine the 
performance of the proposed AMFA method for optimizing 
the scheduling of 6 generating units. In addition, DG’s ability 
to improve the results of generating unit scheduling and bus 
voltages against increased loads is also analyzed.  

Based on the results shown in Fig. 5, AMFA is faster 
than FA, and the number of iterations is 501 and 1685, 
respectively  for 100% based load, while the calculation time 
is 93.0789 and 318.8468 seconds, respectively.  
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TABLE VI.  PERFORMANCE COMPARISON OF FA AND AMFA FOR 

CASE-2 

Load 

Number of 

Iteration 
% 

Iteration 

reduction 

Calculation time  

(seconds) 
%  

time 

reduction FA AMFA FA AMFA 

100 % 1685 501 70.27 318.85 93.08 70.81 

120 % 531 107 79.85 56.18 11.04 80.35 

130 % 524 89 83.02 58.63 9.31 84.13 

 

For the 3 types of loading, the performance comparison 
both of methods is presented in Table VI. With AMFA, the 
iteration decreases between 70.27% - 83.02%, while the 
calculation time decreases by 70.81% - 84.13%. 

Table VII presents a comparison of the optimization 
results for case-1 and case-2. In case-2, the optimization 
involves 6 generating units consisting of 4 thermal units and 
2 DG units as previously described.  

TABLE VII.  GENERATING UNITS SCHEDULING ON CASE-1 AND CASE-
2, LOADING AT 100%, 120%, AND 130% OF BASELOAD 

Load Para-meters 
AMFA Methode 

Case-1 Case-2 

100% baseload 

Total Load (MW) 242.5500 242.5500 

Total Gen (MW) 253.2162 250.6112 

Total Loss (MW) 10.6662 8.0612 

Gen 1 (MW) 60.6662 55.6112 

Gen 2 (MW) 50.0000 50.0000 

Gen 3 (MW) 92.4963 75.0000 

Gen 4 (MW) - 10.0000 

Gen 5 (MW) - 10.0000 

Gen 6 (MW) 50.0537 50.0000 

Tot Cost ($/hour) 888.0830 881.4549 

Gen 1 ($/hour) 264.6635 237.4549 

Gen 2 ($/hour) 243.7500 243.7500 

Gen 3 ($/hour) 161.8685 131.2500 

Gen 4 ($/hour) - 17.5000 

Gen 5 ($/hour) - 34.0000 

Gen 6 ($/hour) 217.8010 217.5000 

120% baseload  

Total Load (MW) 296.4500 296.4500 

Total Gen (MW) 314.3218 308.3770 

Total Loss (MW) 17.8718 11.9270 

Gen 1 (MW) 100.4466 61.9270 

Gen 2 (MW) 50.0006 50.0000 

Gen 3 (MW) 100.0000 100.0000 

Gen 4 (MW) - 35.0000 

Gen 5 (MW) - 11.4500 

Gen 6 (MW) 63.8747 50.0000 

Tot Cost ($/hour) 1230.2578 1008.4390 

Gen 1 ($/hour) 511.4930 271.5940 

Gen 2 ($/hour) 243.7540 243.7500 

Gen 3 ($/hour) 175.0000 175.0000 

Gen 4 ($/hour) - 61.2500 

Gen 5 ($/hour) - 39.3450 

Gen 6 ($/hour) 300.0107 217.5000 

130% baseload  

Total Load (MW) 323.4000 323.4000 

Total Gen (MW) 346.7450 336.9210 

Total Loss (MW) 23.3450 13.5210 

Gen 1 (MW) 121.0221 71.9210 

Gen 2 (MW) 51.0981 50.0000 

Gen 3 (MW) 100.0000 100.0000 

Gen 4 (MW) - 35.0000 

Gen 5 (MW) - 30.0000 

Gen 6 (MW) 74.6249 50.0000 

Tot Cost ($/hour) 1458.7020 1143.1110 

Gen 1 ($/hour) 661.9359 328.6110 

Gen 2 ($/hour) 251.2071 243.7500 

Gen 3 ($/hour) 175.0000 175.0000 

Gen 4 ($/hour) - 61.2500 

Gen 5 ($/hour) - 117.0000 

Gen 6 ($/hour) 370.5590 217.5000 

TABLE VIII.  RESULTS OF POWER FLOW ANALYSIS ON CASE-1 AND 

CASE-2 USING AMFA, LOADING AT 100%, 120%, AND 130 % OF THE 

BASELOAD 

Bus 

|V| (p.u.) 

100 % baseload 120 % baseload 130 % baseload 

Case-1 Case-2 Case-1 Case-2 Case-1 Case-2 

1 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 

2 1.0450 1.0450 1.0329 1.0450 1.0254 1.0450 

3 1.0029 1.0178 0.9747 1.0108 0.9571 1.0067 

4 0.9946 1.0125 0.9611 1.0046 0.9402 1.0000 

5 1.0173 1.0254 1.0100 1.0256 1.0100 1.0230 

6 0.9829 1.0067 0.9456 1.0002 0.9226 0.9968 

7 0.9850 1.0033 0.9573 0.9965 0.9424 0.9924 

8 0.9821 1.0100 0.9442 1.0100 0.9206 1.0100 

9 0.9488 1.0022 0.8892 0.9898 0.8492 0.9775 

10 0.9345 0.9777 0.8661 0.9585 0.8193 0.9436 

11 0.9488 1.0500 0.8892 1.0491 0.8492 1.0359 

12 0.9902 1.0128 0.9304 0.9987 0.8888 0.9837 

13 1.0365 1.0500 0.9775 1.0447 0.9357 1.0302 

14 0.9675 0.9929 0.9009 0.9739 0.8548 0.9564 

15 0.9502 0.9784 0.8786 0.9564 0.8288 0.9378 

16 0.9503 0.9822 0.8811 0.9622 0.8334 0.9453 

17 0.9328 0.9728 0.8619 0.9519 0.8134 0.9355 

18 0.9154 0.9502 0.8341 0.9216 0.7778 0.8999 

19 0.9075 0.9455 0.8252 0.9163 0.7686 0.8947 

20 0.9105 0.9500 0.8303 0.9222 0.7751 0.9016 

21 0.9213 0.9638 0.8481 0.9410 0.7983 0.9240 

22 0.9222 0.9643 0.8493 0.9417 0.7997 0.9247 

23 0.9276 0.9600 0.8515 0.9344 0.7990 0.9145 

24 0.9139 0.9513 0.8373 0.9248 0.7851 0.9054 

25 0.9236 0.9570 0.8535 0.9334 0.8060 0.9167 

26 0.8926 0.9271 0.8116 0.8956 0.7568 0.8743 

27 0.9443 0.9746 0.8838 0.9569 0.8430 0.9441 

28 0.9755 1.0011 0.9343 0.9936 0.9084 0.9894 

29 0.9208 0.9518 0.8524 0.9283 0.8066 0.9122 

30 0.9170 0.9481 0.8473 0.9236 0.8007 0.9070 

TABLE IX.  THE NUMBER OF BUSES EXPERIENCING LOW VOLTAGE 

(<0.9 P.U.) ON CASE-1 AND CASE-2, LOADING AT 100%, 120%, AND 130 % 

OF THE BASELOAD 

Loading 
Number of Low Voltage Bus 

Case-1 Case-2 

100% Based Load 1 bus 0 bus 

120% Based Load 18 bus 1 bus 

130% Based Load 21 bus 3 bus 

 

The optimization results show a smaller of total 
generation, total cost and total power loss. Thus the operation 
of the system is more optimal. This proves DG’s ability to 
improve the optimization results. 

The power flow analysis based on the scheduling results 
in Table VII has provided a bus voltage profile. Table VIII 
presents a comparison of the bus voltage profiles in case-1 
and case-2 for 3 types of loading. In case-2, the bus voltage 
profile is much better than in case-1. The number of buses 
experiencing low voltage is significantly reduced. Table IX 
summarizes the number of bus voltages below 0.9 p.u for 
both test cases. 

VI. CONCLUSION  

The adaptive modified firefly (AMFA) algorithm by 
reducing the random movement components of firefly has 
improved its performance. There is an improvement in the 
speed of convergence significantly. Increasing the speed of 
the optimization process opens up opportunities for online 
optimization implementation when the power system is 
operating. The involvement of DG able to improve profile 
bus voltage. Moreover, DG can also improve optimal 
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conditions in terms of total generation, generation cost, and 
power losses. This will be advantageous in the planning of 
short-term power system operations against daily load 
changes. In future work, it is necessary to study the 
application of the AMFA algorithm for optimization of unit 
commitments in real power systems where the generating 
unit has more complicated input-output characteristics.  
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