FAKULTAS TEKNOLOGI INFORMASI

Mobile Programming
[ PG119/ 3 SKS ]

Riskiana Wulan, MKom



CRUD Operation

FAKULTAS
TEKNOLOGI INFORMASI



Create Database (AppDatabase)
DAO Interface (UserDao)
Entity (User)

Adapter (UserAdapter)
Activities for Listing, Editing, and Adding Users

Layouts for all screens

FAKULTAS
TEKNOLOGI INFORMASI




1.

Create Layouts

FAKULTAS
TEKNOLOGI INFORMASI



Main Layout

Jika register button diklik, maka akan
menyimpan user baru ke database

Jika View Users diklik, maka akan
muncul layar view users

View Users

riskia
riski@gmail.com
Edit Delete

riskia
riski@gmail.com
Edit Delete

anar
tell@gmail.com
Edit Delete

cut nyak dien
test@gmail.com
Edit Delete

FAKULTAS
TEKNOLOGI INFORMASI

Layout



Edit User layout

Saat link edit diklik, maka akan muncul layar edit
user

EDIT USER

Name: cut nyak dien

test@gmail.com

Save

FAKULTAS
TEKNOLOGI INFORMASI

Delete Link

Saat delete link diklik, maka akan muncul
konfirmasi. Yes, maka akan menghapus
user dari database

Delete User

Are you sure you want to delete cut nyak
dien?




FAKULTAS TEKNOLOG! INFORMAS!

activity_view_users.xml

<?xml version="1.0" encoding="utf-8"2?>

<LinearlLayout android:layout_width="match_parent"

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_height="match_parent"

android:orientation="vertical"

android:padding="16dp">

<androidx.recyclerview.widget.RecyclerView

android:

android

android

android:

<Button

android:
android:
android:
android:

: android:

) </LinearLayout4

id="@+id/recyclerViewUsers"

:layout_width="match_parent"

:layout_height="wrap_content"

layout_marginTop="16dp" />

layout_margin="28dp"
id="@+id/back_button"
layout_width="wrap_content"
layout_height="wrap_content"
text="Back"/>

FAKULTAS
TEKNOLOGI INFORMASI

activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" @3
<EditText
android:

android:

android

android:

<EditText

android

android:
android:
android:

<EditText

android:
android:
android:
android:
android:

<Button

android:
android:
android:

android:text="Register" />

<Button

android:
android:
android:

android
</LinearLayout>

3 4 android:

id="@+id/editTextName"
layout_width="match_parent"

:layout_height="wrap_content"

hint="Enter Name"
inputType="text" />

:id="@+id/editTextEmail"

android:layout_width="match_parent"

layout_height="wrap_content"
hint="Enter Email"
inputType="textEmailAddress"

id="@+id/editTextPassword"
layout_width="match_parent"
layout_height="wrap_content"
hint="Enter Password"
inputType="textPassword" />

id="@+id/buttonRegister"
layout_width="match_parent"
layout_height="wrap_content"

id="@+id/btnViewUsers"
layout_width="match_parent"
layout_height="wrap_content"

:text="View Users" />



FAKULTAS TEKNOLOG! INFORMAS!

item_user.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" ©:2

<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"

android:orientation="horizontal">

<TextView
android:id="@+id/link_edit"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Edit"

n android:textColor="@color/cardview_dark_background"
android:textSize="14sp"
android:layout_gravity="center_vertical”
android:layout_marginEnd="8dp"
android:clickable="true"
android: focusable="truve"/>

<TextView

android:id="@+id/link_delete"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Delete"

| ] android:textColor="@android:color/holo_red_dark"
android:textSize="14sp"
android:layout_gravity="center_vertical”
android:clickable="true"
android:focusable="true"/>

</LinearLayout>

activity_edit_user.xml

item, <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
<LinearLayout

® [
</LinearLayout>
<EditText

android:id="@+id/editTextEmail"
android:layout_width="match_parent"
android:layout_height="wrap_content"”
android:hint="Enter Email"
android:inputType="textEmailAddress"/>
<EditText
android:id="@+id/editTextPassword"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:hint="Enter Password"
android:inputType="textPassword"/>

<Button
android:id="@+id/buttonSave"
android:layout_width="match_parent"

android:layout_height="wrap_content"
android:text="Save" />

<Button
android:id="@+id/buttonCancel"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Cancel" />

</LinearLayout>

FAKULTAS
TEKNOLOGI INFORMASI




2. Create Database

FAKULTAS
TEKNOLOGI INFORMASI



FAKULTAS TEKNOLOG! INFORMAS!

Ensures that only one instance of AppDatabase is

created during the app's lifecycle.

@Database(entities = {User.class}, version = 1) 7usages 1inherito
8, public abstract class AppDatabase extends RoomDatabase {

I public abstract UserDao userDao(); 1usage 1implementation

private static AppDatabase instance; 3 usages

public static synchronized AppDatabase getInstance(Context context) { nousages

if (instance == null) {
instance = Room.databaseBuilder(context.getApplicationContext(),
AppDatabase.class, name: "app-database")
.build();
}

return instance;

FAKULTAS
TEKNOLOGI INFORMASI

This is a singleton pattern for creating the AppDatabase
instance.

Ensure a single instance of the database: Room
databases are heavy objects that should be
instantiated only once. Creating multiple instances
can lead to performance issues and data
inconsistencies.

Thread safety: The synchronized keyword ensures
that only one thread at a time can access this
method, preventing race conditions when multiple
threads try to initialize the database.

Global access: The getlnstance method provides a
globally accessible entry point to the AppDatabase.



FAKULTAS
TEKNOLOGI INFORMASI

FAKULTAS TEKNOLOG! INFORMAS!

Steps in AppDatabase Creation:

1.  Annotation @Database:

o Specifies the entities (tables) and the version
of the database.

o User.class is your database table.

2. Singleton Pattern:

o Ensures that only one instance of
AppDatabase is created during the app's
lifecycle.

3. Room.databaseBuilder:

o Builds the database with the specified name
(user-database).

o Optionally includes features like
fallbackToDestructiveMigration() to reset the
database if the schema changes.



3. Create Entity

FAKULTAS
TEKNOLOGI INFORMASI



FAKULTAS
TEKNOLOGI INFORMASI

FAKULTAS TEKNOLOG! INFORMAS!

Entity represent of users table in

public class User {

e g the database

public int id;

@ColumnInfo(name = "name")
public String name;

@ColumnInfo(name = "email") 10 usages
public String email;

ColumnInfo(name = "password")
public String password;

public User(String name, String email, String password){
this.name= name;
this.email = email;
this.password = password;

public User(int id, String name, String email, String password) {
this.id = id;
this.name = name;
this.email = email;

this.password = password;

//getter and setters



4. Create Data Access Object (DAO)

FAKULTAS
TEKNOLOGI INFORMASI



FAKULTAS TEKNOLOG! INFORMAS!

@Dao 9usages 1implementatior
public interface UserDao {
@Ins e 1implementatior

void insertUser(User user);

@Query("SELECT * FROM users") 1usage 1implementatior
LiveData<List<User>> getAllUsers();

@Delete 1usage 1implementatio
void deleteUser(User user);
e 1implementatior

void updateUser(User user);

@Query("SELECT * FROM users WHERE name = :name LIMIT 1")
User getUserByName(String name);

FAKULTAS
TEKNOLOGI INFORMASI

LiveData is an observable data holder provided by the
Android Architecture Components.

It is lifecycle-aware, meaning it respects the lifecycle
of the Android components (like Activity or Fragment)
it is observing.

When the data in the LiveData changes, the UI that
observes it automatically updates.

@Query("SELECT * FROM users")
LiveData<List<User>> getAllUsers();

e This method returns a LiveData object
containing a list of users.

e The UI observes this LiveData. Whenever the list
of users in the database changes, the observer
(like a ViewModel or Activity) gets notified, and
the UI gets updated automatically.



5. Create Adapter Class

FAKULTAS
TEKNOLOGI INFORMASI



FAKULTAS
TEKNOLOGI INFORMASI

FAKULTAS TEKNOLOG! INFORMAS!

public class UserAdapter extends RecyclerView.Adapter<UserAdapter.UserViewHolder> { 7usages The notWyDataSetChanged()rnethodis partofthe
private List<User> users; 5usages .
private final OnUserActionListener listener; 3 usages ReCYC|erVIeW.Adapter C|aSS.

public UserAdapter(List<User> users, OnUserActionListener listener) { 1usage
this.users = users; Initialize ith an empty o lated list Purpose:

this.listener = listener;

}
o 5 o e It tells the RecyclerView to refresh its entire
e data set and rebind all items in the adapter
notifyDataSetChanged();
} to the UL.
e Use this when the dataset backing the adapter

oversiae (e.g., List<User> in UserAdapter) has been

ar public UserAdapter.UserViewHolder onCreateViewHolder(@NonNull ViewGroup parent, int viewType) {
view view = LayoutInflater.from(parent.getContext()) updated and needs to be reﬂected N the
.inflate(R.layout.item_user, parent, attachToRoot false); .
RecyclerView.
return new UserViewHolder(view);
}
)& public void onBindViewHolder(@NonNull UserAdapter.UserViewHolder holder, int position) {

User user = users.get(position);
holder.bind(user);

holder.linkEdit.setOnClickListener(v -> listener.onEdit(user));
holder.linkDelete.setOnClickListener(v -> listener.onDelete(user));



FAKULTAS
TEKNOLOGI INFORMASI

FAKULTAS TEKNOLOG! INFORMAS!

[} public int getItemCount() {

return users != null ? users.size() : 0;
+
@ public interface OnUserActionListener { 3 usage implementation
@ void onEdit(User user); 1usage 1implementatior
@ void onDelete(User user); us 1impl al
}

public static class UserViewHolder extends RecyclerView.ViewHolder { 4 us
TextView textViewName, textViewEmail, 1linkEdit, linkDelete; 2usage

public UserViewHolder(@NonNull View itemView) { 1usage
super(itemView);
textViewName = itemView.findViewById(R.id.textViewName);
textViewEmail = itemView.findViewById(R.id.textViewEmail);
1linkEdit = itemView.findViewById(R.id.link_edit);
linkDelete = itemView.findViewById(R.id.link_delete);

}

public void bind(User user) { 1usage
textViewName.setText(user.name);
textViewEmail.setText(user.email);

}



public void setUsers(List<User> users) {
this.users = users;
notifyDataSetChanged();

e Whenever the user list (users) is updated (e.g.,
new data is fetched from the database),
notifyDataSetChanged() ensures that the
RecyclerView reflects the updated list.

Why is this important?

Without calling notifyDataSetChanged(), the
RecyclerView would not know that its data has
changed, and the UI would remain stale.

FAKULTAS
TEKNOLOGI INFORMASI




6. Create Activity Class

FAKULTAS
TEKNOLOGI INFORMASI



FAKULTAS TEKNOLOG! INFORMAS!

FAKULTAS
TEKNOLOGI INFORMASI

public class MainActivity extends AppCompatActivity {
private EditText editTextName, editTextEmail,
private Button buttonRegister,
private AppDatabase appDatabase;

editTextPassword; 2

buttonViews; 2

private void handleRegisterButton() { 1usage
buttonRegister.setOnClickListener(view -> {

string name =

editTextName.getText().toString().trin();
editTextEmail.getText().tostring().trim();
String password = editTextPassword.getText().toString().trim();

String email =

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

if (!name.isEmpty() &k !email.isEmpty() && !password.isEmpty()) {
User user = new User(name, email, password);
new Triead(() -> appDatabase.userDao().insertUser(user)).start();
Toast.makeText( conte
appDatabase = AppDatabase.getInstance(getApplicationContext());
findviews();

MainActivity.this, "User registered successfully!",
}oetse {
Toast.makeText( contex:: MainActivity.this,
13
handleRegisterButton();
handleViewUsersButton();

H;

Toast.LENGTH_SHORT) .show();

"Please fill all fields!", Toast.LENGTH_SHORT).show();

private void findviews() {
editTextName =
private void handleViewUsersButton() { 1usage
buttonViews.setOnClickListener(view -> {

Intent intent = new Intent( packag

startActivity(intent);

findViewById(R.id.editTextName);
editTextEmail =

findviewById(R.1d.editTextEmail);
editTextPassword = findViewById(R.id.editTextPassword);
buttonRegister = findViewById(R.id.buttonRegister);

buttonViews = findViewById(R.id.btnViewUsers);
+
MainActivity.this, ViewUsersActivity.class);

b

Terdapat handle register button dan view
users button



FAKULTAS
TEKNOLOGI INFORMASI

FAKULTAS TEKNOLOG! INFORMAS!

public class ViewUsersActivity extends AppCompatActivity implements UserAdapter.OnUserActionListener {
private RecyclerView recyclerView; 4 usage

private UserAdapter userAdapter; 4

private UserDao userDao; 3 usages

private AppDatabase appDatabase; 2 usage public void onEdit(User user) {

private Button backButton; 2us

Intent intent = new Intent( p

ontext: ViewUsersActivity.this, EditUserActivity.class);

intent.putExtra( name: "USER_NAME", user.getName());
> e intent.putExtra( name: "USER_ID", user.getId());
protected void onCreate(Bundle savedInstanceState) { u‘ % . 2
super.onCreate (savedInstanceState) ; startactivity(intent);
setContentView(R.layout.activity_view_users); ¥

recyclerView = findViewById(R.id.recyclerViewUsers);
backButton = findViewById(R.id.back_button); e e 1usage

r View. M i context: thi H i i
recyclerView.setlLayoutManager(new LinearLayoutManager( this)) public void onDelete(User user) {

userAdapter = new UserAdapter(new ArraylList<>(), listener: this);

recyclerView.setAdapter (userAdapter); }
recyclerView.setAdapter(userAdapter); // Attach the te ervie

appDatabase = AppDatabase.getInstance(getApplicationContext());
userDao = appDatabase.userDao();

userDao.getAllUsers().observe( owner: this, users -> {
if (users ) {

userAdapter.setUsers(users); Update adapte

b

handleBackButton();



FAKULTAS TEKNOLOG! INFORMAS!

public class EditUserActivity extends AppCompatActivity {
private EditText editEmail, editPassword; 3 usage
private TextView textViewUsername; 2us

private Button saveButton, cancelButton; 2usages
private UserDao userDao; 3 usages
private String username; 5usages

private Integer userid; 2u

private AppDatabase appDatabase; 2usages

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_edit_user);

initializeviews();

appDatabase = AppDatabase.getInstance(getApplicationContext());
userDao = appDatabase.userDao();

userid=getIntent().getIntExtra( name: "USER_ID", defaultValue: -1)
username = getIntent().getStringExtra( na "USER_NAME") ;
if (username != null) {

textViewUsername.setText(username);

new Thread(() -> {
User user = userDao.getUserByName(username);
runOnUiThread(() -> {
editPassword.setText(user.getPassword());
editEmail.setText(user.getEmail());
I H
}).startQ);

FAKULTAS
TEKNOLOGI INFORMASI

saveButton.setOnClickListener(v -> {
String password = editPassword.getText().toString();
String email = editEmail.getText().toString();

if (!password.isEmpty() && !email.isEmpty()) {
User updatedUser = new User(userid, username, email, password);

Log.d( tag: "updatedUser", updatedUser.toString());
new Thread(() -> {
userDao.updateUser (updatedUser); Update the user in the kg
runOnUiThread(() -> {
Toast.makeText( context: EditUserActivity.this, text "User updated", Toast.LENGTH_SHORT).show();
finish(); Close the
b
}).startQ);
}
H
cancelButton.setOnClickListener(v -> {
Intent intent = new Intent( packageContext: EditUserActivity.this, ViewUsersActivity.class);
startActivity(intent);
b

private void initializeviews() { 1
textViewUsername = findViewById(R.id.textViewName);
editPassword = findViewById(R.id.editTextPassword);
editEmail = findViewById(R.id.editTextEmail);
saveButton = findViewById(R.id.buttonSave);
cancelButton= findViewById(R.id.buttonCancel);



The runOnUiThread() method ensures that the
code inside its Runnable is executed on the
main thread.

You typically use it when performing operations
in background threads (e.g., database or
network operations) and need to reflect results
on the UL.

FAKULTAS
TEKNOLOGI INFORMASI



FAKULTAS
TEKNOLOGI INFORMASI

FAKULTAS TEKNOLOG! INFORMAS!

Device Explorer

View -> tool windows-> Device Explorer F Pixet 6 API 35 Ancroid 15,0 (‘VanilceCrean
I H . Files  Processes
The apps’data directory : £
GLALECO
. . Name Permissions Date Size
/data/data/<your.application.package.name o Wi ieneaRe | o
> Dacct drwxr-xr-x 2009-01-01 07:00 278
>/d a ta ba SeS/ > [Dapex drwxr-xr-x 2024-12-10 07:22 1.6 KB
> [bin Irw=r==r-- 2009-01-01 07:00 1B
> [ bootstrap-apex drwxr-xr-x 2024-12-10 07:22 2208
> [Jcache drwxrwx-==- 2009-01-01 07:00 278
> [O config drwxr-xr-x 2024-12-10 07:22 0B
> 3d Irw-r--r-- 2009-01-01 07:00 178
i i v [Ddata drwxrwx--x 2024-12-10 07:22 4KB
Your database will be found in there. g sl saselossig
v [Jdata drwxrwx--x 2024-12-10 07:22 4 KB
~ [ com.ubl.mysimpleapp drwxrwx--x 2024-12-10 07:22 4 KB
> [0 .agent-logs drwx=====- 2024-12-13 08:46 4KB
> [0 cache drwxrws--x 2024-12-13 08:44 4 KB
> [ code_cache drwxrws--x 2024-12-13 08:46 4 KB
~ [0 databases drwxrwx--x 2024-12-13 08:44 4KB
= app-database “TW=TW==== 2024-12-13 08:44 4 KB
= app-database-shm “TW======= 2024-12-13 08:46 32 KB

= app-database-wal “[W======= 2024-12-13 08:46 52.3KB



