
FAKULTAS TEKNOLOGI INFORMASI

Mobile Programming
[PG119/ 3 SKS]

Riskiana Wulan, MKom

FAKULTAS
TEKNOLOGI INFORMASI

DATA Storage and Persistence in Android

FAKULTAS
TEKNOLOGI INFORMASI

Why Data Storage Matters in Mobile Apps

Importance:

● Data persistence is crucial for saving user
information, app settings, and content
between sessions.

● Proper storage ensures smooth user
experiences and app reliability.

Types of Data to Store:

● Small Data: Preferences, settings.
● Structured Data: Records like user

profiles, transactions.
● Files: Images, PDFs, etc.

FAKULTAS
TEKNOLOGI INFORMASI

Android Data Storage Options
1. SharedPreferences
● Key-value pairs.
● Ideal for simple configurations
● e.g., Saving user preferences like theme or login

status).
2. Internal Storage
● Store private files in the device's internal

memory.
● Data is sandboxed and secure.
● e.g Saving app-specific files like text notes

securely
3. External Storage
● Store large files (e.g., images, videos).
● Requires permissions; less secure.
● Shared files accessible by other apps.

4. SQLite Database

● Lightweight relational database for structured
data.

● Structured data with SQL support.
● Ideal for apps requiring complex queries.

5. Room Persistence Library

● Abstraction layer over SQLite.
● Reduces boilerplate code and integrates with

LiveData.

https://developer.android.com/training/data-
storage

https://developer.android.com/training/data-storage
https://developer.android.com/training/data-storage

FAKULTAS
TEKNOLOGI INFORMASI

WHY SQLite
● Advantages:

○ Lightweight and embedded directly in
Android.

○ Ideal for relational data storage.
○ Supports complex queries using SQL.

● Use Cases:
○ Apps requiring user profiles, task

management, or offline data.
○ Any app needing local structured storage.

Steps to Use SQLite
Create a Database and Table

● Define the schema in an SQLite helper class.

Insert Data

● Use ContentValues and db.insert().

Read Data

● Use Cursor to fetch data.

Update Data

● Update records with db.update().

Delete Data

● Remove records using db.delete().

FAKULTAS
TEKNOLOGI INFORMASI

What is SQLite?
Definition:
SQLite is an embedded relational database available in
Android by default.

Key Features:

● Lightweight and serverless.
● Uses SQL for queries.
● Ideal for structured local storage.

Challenges with SQLite
- No compile-time verification of SQL queries.
- Manual boilerplate code for CRUD operations.
- No direct support for observability (e.g.,

LiveData).

Sample of creating an SQLite database in Android

SQLiteDatabase db = openOrCreateDatabase("app_db",
MODE_PRIVATE, null);
db.execSQL("CREATE TABLE IF NOT EXISTS users (id
INTEGER PRIMARY KEY, name TEXT, email TEXT)");
db.execSQL("INSERT INTO users (name, email) VALUES
('John Doe', 'john.doe@example.com')");

https://www.sqlite.org/

https://www.sqlite.org/

FAKULTAS
TEKNOLOGI INFORMASI

WHat is Room Datastore?
Definition: Room is a persistence library part of
Android Jetpack that provides an abstraction layer over
SQLite.
Benefits:

● Simplifies database interaction.
● Provides compile-time verification for SQL

queries.
● Supports LiveData and Flow for observable

queries.

Room Architecture

Main Components:

1. Entity: Represents a table in the database.
2. DAO (Data Access Object): Contains methods

to access the database.
3. Database: Serves as the main access point.

https://developer.android.com/training/data-storage/room

https://developer.android.com/training/data-storage/room

FAKULTAS
TEKNOLOGI INFORMASI

Why Use Room Over SQLite?
Room Benefits:

● Simplifies SQL usage with annotations.
● Compile-time SQL verification.
● Supports LiveData, Flow, and Kotlin Coroutines.
● Built-in migrations.

FAKULTAS
TEKNOLOGI INFORMASI

ROOM IMPLEMENTATION

FAKULTAS
TEKNOLOGI INFORMASI

Room Implementation
1. Adding room dependencies (in

build.gradle)

implementation 'androidx.room:room-runtime:2.5.0'

annotationProcessor 'androidx.room:room-compiler:2.5.0'

2. Create an Entity class (User.java)
@Entity(tableName = "users")

public class User {

 @PrimaryKey(autoGenerate = true)

 public int id;

 @ColumnInfo(name = "name")

 public String name;

 @ColumnInfo(name = "email")

 public String email;

}

Notes:

○ @Entity: Declares the table.
○ @PrimaryKey: Marks the primary key.
○ @ColumnInfo: Customizes column names.

FAKULTAS
TEKNOLOGI INFORMASI

3. Create a DAO class (UserDao.java)
@Dao

public interface UserDao {

 @Insert

 void insertUser(User user);

 @Query("SELECT * FROM users")

 List<User> getAllUsers();

 @Delete

 void deleteUser(User user);

}

@Insert, @Query, @Delete: Predefined annotations
for database operations.

FAKULTAS
TEKNOLOGI INFORMASI

4. Create the database
(AppDatabase.java)

@Database(entities = {User.class}, version = 1)

public abstract class AppDatabase extends
RoomDatabase {

 public abstract UserDao userDao();

}

Note:
Masukkan entity class di dalam entities
database

FAKULTAS
TEKNOLOGI INFORMASI

Trigger create database from MainActivity
Lalu kita bisa melakukan testing
dengan run app melalui emulator

Note:
Use a separate thread for database
operations to avoid blocking the UI
thread.

FAKULTAS
TEKNOLOGI INFORMASI

Debug database in Android
Pilih view->tool window->App
inspection

Perhatikan di tab Database
Inspector, terdapat user-database
beserta table users yang berhasil
terbentuk

FAKULTAS
TEKNOLOGI INFORMASI

Kita dapat melakukan query langsung ke database
melalui database inspector

FAKULTAS
TEKNOLOGI INFORMASI

HANDS ON LAB

FAKULTAS
TEKNOLOGI INFORMASI

Lanjutan Student Registration form
Buat database untuk menyimpan
student registration dengan
Room
- Pada saat button register

diklick, maka new student
akan tersimpan ke database

- Tampilkan pada summary
activity berupa record
student yang berasal dari
database

