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Why Data Storage Matters in Mobile Apps

Importance:

● Data persistence is crucial for saving user 
information, app settings, and content 
between sessions.

● Proper storage ensures smooth user 
experiences and app reliability.

Types of Data to Store:

● Small Data: Preferences, settings.
● Structured Data: Records like user 

profiles, transactions.
● Files: Images, PDFs, etc.
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Android Data Storage Options
1. SharedPreferences
● Key-value pairs.
● Ideal for simple configurations 
● e.g., Saving user preferences like theme or login 

status).
2. Internal Storage
● Store private files in the device's internal 

memory.
● Data is sandboxed and secure.
● e.g Saving app-specific files like text notes 

securely
3. External Storage
● Store large files (e.g., images, videos).
● Requires permissions; less secure.
● Shared files accessible by other apps.

4. SQLite Database

● Lightweight relational database for structured 
data.

● Structured data with SQL support.
● Ideal for apps requiring complex queries.

5. Room Persistence Library

● Abstraction layer over SQLite.
● Reduces boilerplate code and integrates with 

LiveData.

https://developer.android.com/training/data-
storage

https://developer.android.com/training/data-storage
https://developer.android.com/training/data-storage
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WHY SQLite
● Advantages:

○ Lightweight and embedded directly in 
Android.

○ Ideal for relational data storage.
○ Supports complex queries using SQL.

● Use Cases:
○ Apps requiring user profiles, task 

management, or offline data.
○ Any app needing local structured storage.

Steps to Use SQLite
Create a Database and Table

● Define the schema in an SQLite helper class.

Insert Data

● Use ContentValues and db.insert().

Read Data

● Use Cursor to fetch data.

Update Data

● Update records with db.update().

Delete Data

● Remove records using db.delete().
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What is SQLite?
Definition:
SQLite is an embedded relational database available in 
Android by default.

Key Features:

● Lightweight and serverless.
● Uses SQL for queries.
● Ideal for structured local storage.

Challenges with SQLite
- No compile-time verification of SQL queries.
- Manual boilerplate code for CRUD operations.
- No direct support for observability (e.g., 

LiveData).

Sample of creating an SQLite database in Android

SQLiteDatabase db = openOrCreateDatabase("app_db", 
MODE_PRIVATE, null);
db.execSQL("CREATE TABLE IF NOT EXISTS users (id 
INTEGER PRIMARY KEY, name TEXT, email TEXT)");
db.execSQL("INSERT INTO users (name, email) VALUES 
('John Doe', 'john.doe@example.com')");

https://www.sqlite.org/

https://www.sqlite.org/
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WHat is Room Datastore?
Definition: Room is a persistence library part of 
Android Jetpack that provides an abstraction layer over 
SQLite.
Benefits:

● Simplifies database interaction.
● Provides compile-time verification for SQL 

queries.
● Supports LiveData and Flow for observable 

queries.

Room Architecture

Main Components:

1. Entity: Represents a table in the database.
2. DAO (Data Access Object): Contains methods 

to access the database.
3. Database: Serves as the main access point.

https://developer.android.com/training/data-storage/room

https://developer.android.com/training/data-storage/room
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Why Use Room Over SQLite?
Room Benefits:

● Simplifies SQL usage with annotations.
● Compile-time SQL verification.
● Supports LiveData, Flow, and Kotlin Coroutines.
● Built-in migrations.
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Room Implementation
1. Adding room dependencies (in 

build.gradle)

implementation 'androidx.room:room-runtime:2.5.0'

annotationProcessor 'androidx.room:room-compiler:2.5.0'

2. Create an Entity class (User.java)
@Entity(tableName = "users")

public class User {

   @PrimaryKey(autoGenerate = true)

   public int id;

   @ColumnInfo(name = "name")

   public String name;

   @ColumnInfo(name = "email")

   public String email;

}

Notes:

○ @Entity: Declares the table.
○ @PrimaryKey: Marks the primary key.
○ @ColumnInfo: Customizes column names.
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3. Create a DAO class (UserDao.java)
@Dao

public interface UserDao {

   @Insert

   void insertUser(User user);

   @Query("SELECT * FROM users")

   List<User> getAllUsers();

   @Delete

   void deleteUser(User user);

}

@Insert, @Query, @Delete: Predefined annotations 
for database operations.
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4. Create the database 
(AppDatabase.java)

@Database(entities = {User.class}, version = 1)

public abstract class AppDatabase extends 
RoomDatabase {

   public abstract UserDao userDao();

}

Note:
Masukkan entity class di dalam entities 
database
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Trigger create database from MainActivity
Lalu kita bisa melakukan testing 
dengan run app melalui emulator

Note:
Use a separate thread for database 
operations to avoid blocking the UI 
thread.
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Debug database in Android
Pilih view->tool window->App 
inspection

Perhatikan di tab Database 
Inspector, terdapat user-database 
beserta table users yang berhasil 
terbentuk



FAKULTAS 
TEKNOLOGI INFORMASI

Kita dapat melakukan query langsung ke database 
melalui database inspector
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HANDS ON LAB
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Lanjutan Student Registration form
Buat database untuk menyimpan 
student registration dengan 
Room
- Pada saat button register 

diklick, maka new student 
akan tersimpan ke database

- Tampilkan pada summary 
activity berupa record 
student yang berasal dari 
database


