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Abstract: This study proposes a Modified Lightweight Multimodal Transformer (MLMT) for rapid disaster detection 

by integrating social media text, images, and real-time weather data. The model employs lightweight modality-specific 

encoders and an adaptive cross-attention mechanism that dynamically prioritizes the most reliable information during 

disaster events. Local disaster tokens enhance contextual understanding of region-specific hazards, while a Social 

Event Burst Detector captures sudden spikes in online activity that may indicate emerging emergencies. Quantization-

aware training is applied to enable deployment on resource-constrained edge devices. Experimental results show that 

MLMT achieves an accuracy of 91.2%, an F1-score of 0.90, and an AUC of 0.94, outperforming lightweight baselines 

while maintaining significantly lower computational requirements. The quantized model reduces size to 17 MB and 

achieves 47 ms inference latency, making it suitable for real-time early warning systems. These findings indicate that 

MLMT provides an efficient and practical solution for disaster detection, particularly in regions with limited 

computational resources. 
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1. Introduction 

Indonesia is one of the world’s most disaster-

prone regions due to its complex geological and 

climatic conditions [1]. The frequency of natural 

hazards such as floods, landslides, and earthquakes 

continues to rise each year, particularly in densely 

populated urban areas [2]. Conventional disaster 

detection systems rely heavily on physical sensors, 

which often suffer from limited coverage and delayed 

reporting during critical events [3]. At the same time, 

social media platforms have emerged as rapid 

information channels where affected communities 

share real-time updates about unfolding disasters [4]. 

Studies have shown that spikes in online activity can 

be used as early indicators of crisis situations [5]. 

However, social media data is noisy, unstructured, 

and difficult to interpret using traditional analytical 

methods [6]. 

Artificial intelligence, particularly Transformer-

based architectures, has transformed the processing 

of high-dimensional data in recent years [7]. Large 

multimodal models such as CLIP and Flamingo 

demonstrate strong capabilities in integrating image 

and text information for complex reasoning tasks [8]. 

Despite their effectiveness, these models are 

computationally heavy and difficult to deploy in 

resource-constrained disaster response environments 

[9]. Lightweight Transformer variants, including 

TinyBERT and MobileViT, offer improved 

efficiency but remain limited to single-modal tasks 

[10]. Existing multimodal disaster detection 

frameworks mostly focus on either text analytics or 

image classification without incorporating 

environmental context such as weather data [11]. 

Weather information, particularly parameters from 

meteorological agencies, plays a crucial role in 

understanding disaster dynamics [12]. 

Recent research has attempted to fuse multimodal 

disaster data, yet most approaches rely on traditional 

fusion mechanisms that cannot adaptively weight the 

reliability of each modality [13]. Furthermore, very 
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few studies address the challenge of capturing sudden 

bursts of social media activity that may signal 

emerging hazards [14]. Most existing models also 

ignore the importance of domain-specific contextual 

knowledge, which is essential for differentiating 

disaster-related content in local settings [15]. For 

disaster-prone countries with limited digital 

infrastructure, models must be compact, fast, and 

suitable for edge deployment [16]. This creates an 

urgent need for a multimodal framework that is both 

computationally efficient and contextually aware 

[17]. 

To address these limitations, this study proposes 

the Modified Lightweight Multimodal Transformer 

(MLMT), a compact Transformer-based architecture 

designed for rapid disaster detection using social 

media and weather data [18]. The model integrates 

lightweight encoders for text, images, and weather 

streams to ensure operational efficiency in 

constrained environments [19]. An adaptive cross-

attention mechanism is introduced to dynamically 

adjust modality contributions based on their moment-

to-moment reliability [20]. Local disaster tokens are 

incorporated to enhance the model’s contextual 

understanding of region-specific hazards [21]. A 

Social Event Burst Detector is integrated to identify 

sudden spikes in online activity that may correspond 

to early signs of disaster events [22]. The architecture 

is trained using quantization-aware training to reduce 

model size and inference latency without sacrificing 

predictive performance [23]. 

The objective of this research is to develop a fast, 

efficient, and context-aware multimodal Transformer 

that improves the timeliness and accuracy of disaster 

detection systems [24]. Additionally, this study aims 

to demonstrate the feasibility of deploying 

multimodal Transformer models on edge devices 

commonly used in disaster management 

infrastructures [25]. The proposed MLMT 

contributes to the field by integrating multimodal 

fusion, adaptive attention, domain-specific tokens, 

and burst detection in a single unified architecture 

[26]. It also contributes by presenting a realistic 

operational workflow for combining weather data 

with social media signals in disaster early warning 

systems [27]. Through extensive evaluation, this 

study highlights the advantages of MLMT compared 

to existing lightweight multimodal baselines [28]. 

Overall, this research contributes to practical, data-

driven disaster intelligence by introducing an 

efficient multimodal Transformer architecture 

capable of capturing complex cross-modal 

interactions in real time [29]. 

Furthermore, the proposed approach strengthens 

operational disaster analytics by integrating social 

media dynamics with environmental signals, 

enabling more adaptive and context-aware early 

warning capabilities [30]. Collectively, these 

innovations demonstrate a scalable foundation for 

advancing multimodal disaster detection systems 

suitable for deployment in resource-constrained 

environments [31]. 

The main contributions of this study are 

summarized as follows: (1) This study proposes a 

Modified Lightweight Multimodal Transformer 

(MLMT) that integrates social media text, images, 

and real-time weather data within a unified and 

computationally efficient architecture for rapid 

disaster detection on edge devices. (2) An adaptive 

cross-attention mechanism is introduced to 

dynamically reweight multimodal representations 

based on their moment-to-moment reliability, 

addressing the limitations of static fusion strategies 

commonly used in existing multimodal approaches. 

(3) The proposed model incorporates local disaster 

tokens to encode region-specific hazard context, 

enabling more robust discrimination between 

disaster-related and non-disaster social media content 

in local environments. (4) A Social Event Burst 

Detector (SEBD) is integrated to explicitly capture 

abnormal surges in social media activity, enhancing 

early detection of emerging disaster events beyond 

content-based analysis alone. (5) Quantization-aware 

training is applied to significantly reduce model size 

and inference latency while preserving predictive 

performance, demonstrating the feasibility of 

deploying multimodal Transformer models in 

resource-constrained disaster management 

infrastructures. (6) Comprehensive experimental 

evaluations, including ablation studies and edge-

device efficiency analysis, are conducted to validate 

the effectiveness, robustness, and practical 

applicability of the proposed approach. 

Section 2 reviews related work on disaster 

detection using social media, multimodal learning, 

and lightweight Transformer architectures. Section 3 

describes the proposed Modified Lightweight 

Multimodal Transformer (MLMT), including the 

multimodal data preparation, model architecture, 

adaptive cross-attention mechanism, and Social 

Event Burst Detector. Section 4 presents the 

experimental setup, evaluation results, ablation 

studies, and efficiency analysis on edge devices. 

Finally, Section 5 concludes the paper and outlines 

directions for future research. 

Overall, this study presents a Modified 

Lightweight Multimodal Transformer (MLMT) 

designed to address the practical challenges of rapid 

disaster detection in resource-constrained 

environments. By integrating social media text, 
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visual content, and real-time weather data through 

adaptive cross-attention, local disaster tokens, and 

social event burst modeling, the proposed MLMT 

achieves competitive performance with recent 

lightweight and multimodal models while offering a 

substantially improved trade-off between detection 

accuracy, computational efficiency, and adaptability 

for edge deployment. The remainder of this paper is 

organized as follows: Section 2 reviews related work 

on disaster detection and multimodal learning; 

Section 3 describes the proposed MLMT architecture 

and methodology; Section 4 presents the 

experimental setup and evaluation results; and 

Section 5 concludes the paper and outlines future 

research directions. 

2. Related work    

2.1 Text-based disaster detection 

Text-based disaster detection has been widely 

explored through natural language processing 

techniques designed to extract situational awareness 

from social media posts during disaster events [32]. 

Approaches based on traditional machine learning 

and deep learning models have demonstrated the 

ability to identify disaster-related content, sentiment, 

and urgency from short textual messages. 

However, text-based methods are highly sensitive 

to noisy, ambiguous, and informal user-generated 

content, which is common on social media platforms. 

Variations in language use, sarcasm, incomplete 

descriptions, and non-disaster chatter often lead to 

false positives or missed detections, particularly 

during rapidly evolving disaster situations where 

reliable information is scarce. 

2.2 Image-based disaster detection 

Image-based disaster recognition has gained 

substantial attention, particularly for identifying 

damage severity, affected infrastructure, and scene 

context using deep convolutional neural networks 

[33]. Visual information can provide valuable cues 

that are not always explicitly stated in textual 

descriptions. 

Despite their effectiveness in capturing visual 

damage patterns, image-based approaches often lack 

sufficient contextual and environmental information 

to accurately interpret disaster situations. Visually 

similar scenes, such as flooded streets caused by 

routine rainfall or crowded urban areas, may be 

misclassified as disasters without additional 

contextual signals, limiting the reliability of image-

only methods in real-world scenarios. 

2.3 Multimodal fusion approaches 

To overcome the limitations of single-modality 

methods, multimodal fusion approaches have been 

proposed to combine textual and visual information 

for disaster detection [34]. Recent advances in 

Transformer-based architectures have further 

enabled strong multimodal reasoning by modeling 

cross-modal interactions between different data 

sources [33]. 

Nevertheless, most existing multimodal 

approaches rely on static fusion mechanisms that 

assume fixed importance for each modality. Such 

strategies fail to adapt to dynamic disaster conditions, 

where the reliability of textual, visual, or 

environmental information may vary over time. 

Moreover, Transformer-based multimodal models 

typically require substantial computational resources, 

making them unsuitable for real-time deployment in 

resource-constrained disaster response environments. 

2.4 Lightweight and edge-oriented disaster 

detection models 

Lightweight Transformer variants and edge-

oriented models have been introduced to reduce 

computational complexity and enable low-latency 

inference on resource-limited devices [34]. Edge 

intelligence frameworks further support real-time 

analytics by bringing computation closer to data 

sources, which is essential for early warning 

applications in disaster-prone regions [35]. 

However, most lightweight and edge-oriented 

solutions are designed for single-modality inputs and 

lack comprehensive multimodal integration. 

Although burst detection techniques have 

demonstrated the value of identifying sudden spikes 

in online activity as early indicators of emerging 

crisis situations [36], they are rarely combined with 

multimodal representation learning and 

environmental context integration within a unified 

framework. 

Recent lightweight and efficient Transformer-

based models for disaster detection and social sensing 

have been proposed to improve the practicality of 

multimodal systems in resource-constrained 

environments. 

DeLTran15 (2024) introduces a compact 

Transformer architecture optimized for social media 

text analysis, achieving reduced latency while 

maintaining competitive accuracy for disaster-related 

classification tasks. EdgeTran (2025) further extends 

this direction by incorporating efficiency-oriented 

design choices, such as parameter sharing and low-

rank attention, to support multimodal inputs under 
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strict computational constraints. Other recent 

multimodal social sensing frameworks emphasize 

early event detection by fusing textual and visual 

signals but often rely on static fusion strategies or 

omit environmental context such as weather data. 

While these approaches demonstrate promising 

efficiency–accuracy trade-offs, they generally lack 

adaptive modality reweighting, explicit modeling of 

social activity bursts, or integrated environmental 

signals. These limitations motivate the design of the 

proposed MLMT, which aims to jointly address 

multimodal adaptability, early event sensitivity, and 

edge-level efficiency within a unified framework. 

2.5 Summary and positioning of this work 

In summary, existing disaster detection 

approaches suffer from fundamental limitations in 

terms of modality coverage, adaptability, and 

computational efficiency. Text-based and image-

based methods struggle with noise, ambiguity, and 

limited contextual awareness, while current 

multimodal models often rely on static fusion 

strategies and remain computationally expensive for 

real-time deployment. Lightweight and edge-oriented 

approaches address efficiency concerns but typically 

lack comprehensive multimodal awareness and 

adaptive fusion capabilities. 

These limitations motivate the need for a 

lightweight, adaptive, and context-aware multimodal 

framework that can integrate social media signals, 

environmental data, and social activity dynamics 

while remaining suitable for real-time edge 

deployment. This research addresses these challenges 

through the proposed Modified Lightweight 

Multimodal Transformer (MLMT). 

Unlike existing disaster detection approaches, the 

proposed Modified Lightweight Multimodal 

Transformer (MLMT) is explicitly designed to 

address the combined challenges of multimodal 

adaptability, computational efficiency, and early 

event sensitivity. While text-only and image-only 

methods rely on a single information source, MLMT 

jointly models social media text, visual content, and 

real-time weather data within a unified framework. In 

contrast to conventional multimodal models that 

employ static fusion strategies, MLMT introduces an 

adaptive cross-attention mechanism that dynamically 

adjusts modality importance according to their 

reliability during evolving disaster situations. 

Furthermore, unlike prior lightweight and edge-

oriented models that sacrifice multimodal awareness 

for efficiency, MLMT integrates local disaster tokens 

and a Social Event Burst Detector to enhance 

contextual understanding and early warning 

capability, while remaining suitable for real-time 

deployment through quantization-aware optimization. 

3. Method    

This section describes the overall methodology 

used to develop the Modified Lightweight 

Multimodal Transformer (MLMT). The method 

includes multimodal dataset preparation, 

architectural design, lightweight encoder 

development, multimodal fusion, adaptive attention, 

burst detection, quantization-aware optimization, and 

the final classification process. 

3.1 Multimodal dataset preparation 

The proposed MLMT model operates on three 

primary data modalities: social media text, social 

media images, and weather data. Text data consists of 

user-generated posts collected from platforms such as 

Twitter and TikTok. Image data consists of disaster-

related photos embedded in social media posts. 

Weather data is retrieved from meteorological XML 

feeds containing parameters such as rainfall, 

humidity, wind speed, temperature, and atmospheric 

pressure. 

Preprocessing is performed independently for 

each modality. Text data is cleaned by removing 

noise, performing token normalization, and applying 

subword tokenization. Image data is standardized 

through resizing, normalization, and augmentation 

where appropriate. Weather data is converted into 

fixed-length sequences and interpolated when 

necessary to align timestamps across modalities. 

Each modality is then transformed into structured 

input tokens suitable for the MLMT model. 

3.2 Dataset description and governance 

The experiments in this study are conducted using 

a custom multimodal dataset consisting of social 

media text, social media images, and corresponding 

weather data. Social media data were collected from 

publicly accessible posts on platforms such as Twitter 

and TikTok over a defined time period covering 

multiple disaster events. The dataset focuses on 

disaster-prone regions in Indonesia and includes 

posts written primarily in Indonesian, with a smaller 

portion in English. 

Disaster-related social media posts were retrieved 

using a set of disaster-specific keywords and hashtags 

associated with floods, landslides, and earthquakes. 

Non-disaster posts were also collected to represent 

background social media activity. All posts were 

filtered to remove duplicates, spam, and irrelevant 

content. Only publicly available data were used, 
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Figure. 1 Method of Modified Lightweight Multimodal Transformer 

 

 
Table 1. Summary of the Multimodal Dataset 

Attribute Description 

Data sources Publicly accessible social media posts 

from Twitter and TikTok; official 

meteorological data from national 

weather agencies 

Collection 

period 

Data collected over multiple disaster 

events between [2021–2023] 

Geographic 

scope 

Disaster-prone regions in Indonesia 

Languages Primarily Indonesian, with a smaller 

subset of English posts 

Modalities Textual posts, embedded images, and 

aligned weather time-series data 

Disaster 

categories 

Flood, landslide, earthquake, and non-

disaster 

Weather 

parameters 

Rainfall, temperature, humidity, wind 

speed, atmospheric pressure 

Temporal 

alignment 

Weather records synchronized with 

social media posts using timestamp-

based matching within a fixed time 

window 

Data access 

& ethics 

Only publicly available data were 

used; no personal or private 

information was collected 

 

and no private or restricted information was accessed. 

The dataset was manually annotated into four 

classes: flood, landslide, earthquake, and non-

disaster. Annotation was performed following 

predefined labeling guidelines based on event 

descriptions, visual evidence, and contextual cues.  

Weather data were obtained from official 

meteorological sources and include parameters such 

as rainfall, temperature, humidity, wind speed, and 

atmospheric pressure. Weather records were 

temporally aligned with social media posts using 

timestamp synchronization within a fixed time 

window to ensure consistency between 

environmental conditions and online activity. 

The final dataset was randomly split into 70% 

training, 10% validation, and 20% testing sets, 

ensuring that samples from different disaster 

categories were proportionally represented. Due to 

privacy and platform usage policies, the dataset 

cannot be publicly released; however, aggregated 

statistics, preprocessing procedures, and 

experimental configurations are provided to support 

reproducibility and transparency. 

From an ethical perspective, only publicly 

available social media content was used in this study. 

No private information, user identifiers, or personal 

data were collected or stored. All data handling 

procedures complied with platform usage policies 

and common ethical practices for social media 

research. 

3.3 Model architecture overview 

The MLMT architecture is designed as a compact 

multimodal Transformer optimized for rapid and 

adaptive disaster detection. It consists of three 

lightweight encoders, a token fusion layer that 

incorporates local disaster tokens, an adaptive cross-

attention module, a Social Event Burst Detector 
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(SEBD), and a final classification head. The 

architecture ensures efficient information exchange 

across modalities while maintaining low 

computational cost suitable for edge devices. 

3.4 Lightweight encoders 

The text encoder processes social media text 

using a compact Transformer-based structure 

designed to reduce computational overhead while 

preserving semantic representation quality. The 

image encoder extracts visual features from disaster-

related images using a lightweight convolutional 

backbone optimized for fast inference. The weather 

encoder utilizes a 1D convolutional network 

combined with positional encoding to capture 

temporal dependencies within meteorological 

sequences. Each encoder outputs a set of feature 

tokens that are forwarded to the fusion layer. 

3.5 Token fusion layer with local disaster tokens 

To enrich the model’s understanding of disaster-

related context, a set of local disaster tokens is 

introduced. These tokens represent region-specific 

hazard cues, terminology, and patterns commonly 

present in disaster scenarios. During fusion, encoder 

outputs are concatenated with the disaster token 

embeddings to form a unified multimodal token 

sequence. This sequence acts as the input for 

subsequent attention-based processing and improves 

the model’s sensitivity to disaster-specific signals. 

3.6 Adaptive cross-attention layer 

The adaptive cross-attention layer enables 

dynamic balancing of information across modalities. 

Instead of relying on fixed fusion rules, the module 

computes cross-attention weights that reflect the 

relative reliability of each modality at a given 

moment. 

For example, during severe weather events, the 

weather stream may carry stronger predictive value, 

whereas during rapidly spreading public 

conversations, textual bursts may be more 

informative. The adaptive cross-attention mechanism 

ensures that the MLMT model selectively 

emphasizes the most relevant modality for accurate 

and timely disaster detection. 

3.7 Social event burst detector (SEBD) 

The Social Event Burst Detector is responsible 

for identifying sudden increases in online activity 

linked to potential disaster situations. SEBD monitors 

temporal patterns in the frequency of social media 

posts and creates a burst signal when abnormal spikes 

occur. This burst signal is subsequently combined 

with the fused multimodal features to enhance the 

model’s responsiveness to early indicators of 

emerging disaster events. 

3.8 Quantization-aware training 

To enable efficient deployment in edge 

environments, MLMT is optimized using 

quantization-aware training. This technique 

simulates low-precision inference during training, 

allowing the model to learn robust representations 

even when parameters and activations are quantized. 

As a result, the final model operates with reduced 

memory usage, faster inference speed, and lower 

computational requirements, making it suitable for 

disaster response systems deployed on low-power 

hardware. 

3.9 Output layer and classification objective 

The final multimodal representation produced by 

the adaptive attention and SEBD components is 

passed through a fully connected classification head. 

This layer outputs the predicted disaster category 

or an alert-level score depending on the operational 

configuration. The training objective minimizes a 

cross-entropy loss function to ensure discriminative 

performance across multiple disaster types. The 

overall architecture is designed to produce stable, fast, 

and context-aware predictions suitable for real-time 

disaster detection. 

3.10 Theoretical rationale of the proposed MLMT 

The effectiveness of the proposed Modified 

Lightweight Multimodal Transformer (MLMT) is 

motivated by the dynamic and context-dependent 

nature of disaster events. In real-world scenarios, the 

reliability of information sources such as social 

media text, images, and environmental signals varies 

over time. Consequently, static fusion strategies that 

assign fixed importance to each modality may lead to 

unstable or suboptimal predictions. 

To address this issue, MLMT employs adaptive 

cross-attention to dynamically reweight modality 

contributions according to their momentary 

informativeness. When a modality provides stronger 

and more reliable signals—such as meteorological 

anomalies during extreme weather events or surges in 

textual reports during emergencies—its influence on 

the fused representation is increased. This 

mechanism aligns with uncertainty-aware decision-

making principles, where higher-confidence 

evidence should play a greater role in prediction.  
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Figure. 2 Architecture MLMT 

 

 

Local disaster tokens introduce an inductive bias 

toward disaster-relevant semantics by embedding 

region-specific hazard context directly into the model. 

This reduces ambiguity caused by noisy or generic 

social media content and improves generalization in 

data-scarce conditions. In addition, the Social Event 

Burst Detector (SEBD) captures abrupt increases in 

social media activity that may indicate emerging 

disaster situations. Rather than acting as an 

independent trigger, burst signals are integrated with 

multimodal representations to enhance early 

detection while limiting false alarms through cross-

modal validation. 

Finally, quantization-aware training enables 

efficient edge deployment by preserving model 

behavior under low-precision constraints, supporting 

the premise that efficiency and robust multimodal 

reasoning can be jointly achieved. Together, these 

design choices provide a coherent explanation for the 

observed balance between accuracy, robustness, and 

computational efficiency achieved by MLMT. 

4. Result and discussion    

This section presents the evaluation of the 

Modified Lightweight Multimodal Transformer 

(MLMT) and discusses its performance across 

multiple dimensions, including classification 

accuracy, discriminatory capability, component-level 

contributions, and computational efficiency on edge 

devices. The experiments demonstrate that the 

proposed approach can achieve high predictive 

performance while remaining suitable for real-time 

disaster detection. The overall architecture of the 

proposed MLMT, including its lightweight encoders, 

adaptive cross-attention mechanism, and Social 

Event Burst Detector, is illustrated in Fig. 2. 

Table 2. Training Hyperparameters and Experimental 

Settings 

Parameter Value 

Optimizer Adam 

Initial learning rate 1 × 10⁻⁴ 

Batch size 32 

Number of epochs 30 

Loss function Categorical cross-entropy 

Weight decay 1 × 10⁻⁵ 

Dropout rate 0.1 

Random seed 42 

Quantization 

method 

Quantization-aware training (8-

bit) 

Hardware Lightweight edge device / mini-

server 

 

4.1 Evaluation setup 

The MLMT model was evaluated on a 

multimodal dataset consisting of social media text, 

disaster-related images, and aligned weather time-

series data. The dataset was split into 70% for training, 

10% for validation, and 20% for testing. Four primary 

classes were considered: flood, landslide, earthquake, 

and non-disaster. Evaluation metrics included 

accuracy, precision, recall, F1-score, and AUC (area 

under the ROC curve). In addition, inference latency 

and model size were measured on a lightweight edge 

device comparable to a mini-server or Raspberry Pi. 

All experiments were conducted using fixed 

random seeds to ensure reproducibility. The same 

training configuration and hyperparameter settings 

were applied consistently across all baseline models 

and the proposed MLMT, unless explicitly stated 

otherwise. Quantization-aware training was applied 

during training to simulate low-precision inference 

and enable efficient deployment on edge devices. 
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Table 3. Configuration of Baseline and Comparison Models 

Model Backbone / Encoder Input Modality Key Configuration 

Text-only 

Transformer 

Lightweight Transformer 

encoder (TinyBERT-style) 

Text Tokenized social media 

posts; max sequence length 

128 

Image-only CNN Lightweight CNN backbone 

(MobileNet-style) 

Image Input size 224×224; 

normalized RGB images 

Weather-only CNN 1D CNN with temporal 

convolution 

Weather Fixed-length weather 

sequences with positional 

encoding 

Early Fusion CNN + 

BiLSTM 

CNN + BiLSTM Text + Image + 

Weather 

Feature concatenation before 

classification 

Heavy Multimodal 

Transformer 

Full-scale multimodal 

Transformer 

Text + Image + 

Weather 

Multi-layer Transformer 

with cross-modal attention 

Proposed MLMT Modified Lightweight 

Multimodal Transformer 

Text + Image + 

Weather 

Lightweight encoders, 

adaptive cross-attention, 

SEBD 

 
Table 4. Overall performance comparison on the test set 

Model Modalities Accuracy F1-score AUC 

Text-only Transformer 

(baseline) 

Text 84.3% 0.83 0.88 

Image-only CNN 

(baseline) 

Image 79.1% 0.78 0.84 

Weather-only CNN Weather 76.5% 0.75 0.82 

Early Fusion CNN + 

BiLSTM 

Text + Image + 

Weather 

86.0% 0.85 0.90 

Heavy Multimodal 

Transformer 

Text + Image + 

Weather 

92.1% 0.91 0.95 

Proposed MLMT (ours) Text + Image + 

Weather 

91.2% 0.90 0.94 

 

To ensure a fair and reproducible comparison, all 

models, including the proposed MLMT and recent 

baseline methods, were evaluated using identical data 

splits (70% training, 10% validation, and 20% 

testing), preprocessing pipelines, and evaluation 

metrics. Text data were tokenized using the same 

subword tokenizer, images were resized and 

normalized consistently, and weather features were 

temporally aligned using the same timestamp 

window across all experiments. Random seeds were 

fixed across multiple runs to reduce variance, and 

reported results correspond to the mean performance 

over repeated trials. 

For recent baseline methods that do not natively 

support all input modalities (e.g., weather streams), 

experiments were conducted using their originally 

supported modalities only. When exact reproduction 

was not feasible due to unavailable implementation 

details, modality mismatch, or licensing constraints, 

the closest controlled alternative configuration was 

adopted following the original design principles. 

These limitations are explicitly documented to 

maintain transparency and avoid unfair comparisons 

or over-claiming. 

4.2 Overall classification performance 

This section evaluates the overall classification 

performance of the proposed MLMT in comparison 

with a set of representative baseline models under 

identical data splits and evaluation protocols. The 

baselines include single-modality models, a 

conventional early-fusion approach, a heavy 

multimodal Transformer, and recent lightweight or 

edge-oriented architectures designed for efficient 

social sensing. Table 3 summarizes the configuration, 

backbone choices, and key characteristics of all 

baseline and comparison models used in the 

experiments, providing the basis for a fair and 

transparent performance comparison presented in the 

subsequent tables. 

To ensure fair comparison, all baseline models 

and the proposed MLMT were trained and evaluated 

using the same dataset splits, preprocessing 

procedures, and evaluation metrics. Hyperparameters 

were selected based on commonly used settings for 

lightweight and multimodal models, and no 

additional task-specific tuning was applied to favor 

any particular model. 
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Table 5. Comparison with Recent Lightweight and Multimodal Methods 

Model Accuracy (%) F1-score AUC Model Size (MB) Latency (ms) 

DeLTran15 88.4 0.87 0.91 22 52 

EdgeTran 89.6 0.88 0.92 28 61 

Multimodal Social Sensing 90.1 0.89 0.93 35 74 

Proposed MLMT 91.2 0.90 0.94 17 47 

 

 
Table 6. Statistical Comparison Between MLMT and 

Baseline Models 

Model F1-score 

(mean ± std) 

p-value (vs. 

MLMT) 

Text-only 

Transformer 

0.83 ± 0.01 < 0.01 

Image-only CNN 0.78 ± 0.02 < 0.01 

Weather-only CNN 0.75 ± 0.02 < 0.01 

Early Fusion CNN + 

BiLSTM 

0.85 ± 0.01 < 0.05 

Heavy Multimodal 

Transformer 

0.91 ± 0.01 0.21 

Proposed MLMT 0.90 ± 0.01 — 

 

 

 
Figure. 3 ROC curves of MLMT for each disaster class 

 

 

Table 4 reports the performance of MLMT 

compared to several baseline  models, including 

single-modality models (text only, image only, 

weather only) and a simple multimodal early-fusion 

model. MLMT achieved an accuracy of 91.2%, an 

F1-score of 0.90, and an AUC of 0.94 on the test set. 

Compared with the early-fusion baseline, MLMT 

improved accuracy by approximately 5 percentage 

points and F1-score by 0.05, demonstrating the 

effectiveness of adaptive cross-attention and local 

disaster tokens in enhancing multimodal 

representation quality. 

These recent lightweight baselines were selected 

based on their relevance to efficient social sensing 

and edge-oriented multimodal learning, as discussed 

in Section 2.4. 

MLMT performs comparably to the full-scale 

multimodal Transformer, while maintaining 

significantly lower computational cost, and clearly 

outperforms all lightweight baselines. 

Comparison with recent lightweight and 

multimodal methods published in 2024–2025. 

DeLTran15 is a text-only lightweight Transformer 

baseline, EdgeTran and Multimodal Social Sensing 

are recent multimodal approaches. All models were 

evaluated under identical data splits and metrics. For 

methods that do not support weather inputs, only their 

native modalities were used. 

To assess the statistical significance of 

performance differences, each model was trained and 

evaluated over multiple runs using different random 

seeds. Mean and standard deviation values are 

reported for the F1-score. A paired t-test was 

conducted between the proposed MLMT and each 

baseline model. The results indicate that MLMT 

significantly outperforms lightweight baseline 

models (p < 0.05), while achieving comparable 

performance to the heavy multimodal Transformer 

without incurring its computational overhead. 

4.3 ROC analysis and confusion matrix 

Fig. 3 illustrates the ROC curves for each disaster 

class. The overall AUC exceeds 0.94, with class-

specific values of approximately 0.95 for flood, 0.94 

for landslide, 0.93 for earthquake, and 0.94 for non-

disaster. The consistently high ROC curves indicate 

strong discriminatory capability across multiple 

decision thresholds. 

The confusion matrix in Table 7 provides further 

insight into prediction behavior. For flood, the model 

achieved a recall of 0.92, with misclassifications 

mainly occurring in ambiguous posts lacking clear 

textual cues. Landslide achieved a recall of 0.89, with 

mild confusion against flood due to overlapping 

visual features in hillside regions. Earthquake 

achieved a recall of 0.90, with most errors arising 

from vague text-only posts. The non-disaster class 

achieved high precision, demonstrating the  
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Table 7. Confusion matrix of MLMT 

Actual \ Predicted Flood Landslide Earthquake Non-disaster Recall 

Flood 550 30 10 10 0.92 

Landslide 35 450 15 5 0.89 

Earthquake 20 25 500 15 0.90 

Non-disaster 5 8 12 875 0.97 

Precision 0.89 0.88 0.93 0.96 — 

 
Table 8. Ablation study of MLMT components 

Model Variant 
F1-

score 
AUC 

Latency 

(ms) 

Model 

size 

(MB) 

MLMT without 

local disaster 

tokens 

0.88 0.92 45 17 

MLMT without 

adaptive cross-

attention 

0.87 0.91 44 17 

MLMT without 

SEBD 

0.88 0.92 46 17 

MLMT without 

QAT (full 

precision) 

0.90 0.94 73 42 

MLMT (text + 

weather only) 

0.89 0.93 43 16 

Full MLMT 

(text + image + 

weather) 

0.90 0.94 47 17 

 

 

effectiveness of SEBD and contextual tokens in 

filtering unrelated social chatter. 

Overall, the confusion patterns reveal that 

combining weather signals with social bursts helps 

reduce false positives during extreme weather events 

that do not escalate into disasters, while also reducing 

false negatives during low-volume disaster events 

supported by strong meteorological anomalies. 

4.4 Ablation study of MLMT components 

To examine the contribution of individual 

architectural components, an ablation study was 

conducted. Table 3 compares model variants with 

disaster tokens removed, adaptive cross-attention 

disabled, SEBD removed, QAT disabled, and 

modality-restricted settings. 

Removing local disaster tokens reduced F1-score 

by about two points, showing their value in providing 

event-specific context. Disabling adaptive cross-

attention led to a larger performance drop, indicating 

the importance of dynamically reweighting 

modalities. Removing SEBD reduced model 

responsiveness to early social signals. QAT did not 

affect accuracy but dramatically increased latency 

and model size, reinforcing that QAT is crucial for 

edge deployment. The text + weather-only version 

shows that images provide complementary 

information, but peak performance is reached when 

all three modalities are combined. 

4.5 Robustness and stress testing 

To evaluate the robustness of the proposed 

MLMT under challenging and non-ideal conditions, 

additional stress testing experiments were conducted 

focusing on social activity bursts and modality 

perturbations. 

The Social Event Burst Detector (SEBD) was 

evaluated on periods of intense social media activity 

unrelated to disasters, such as large public events and 

trending topics. Although elevated burst signals were 

initially detected, the adaptive cross-attention 

mechanism effectively downweighted social media 

signals when they were not supported by visual or 

meteorological evidence. As a result, the model 

maintained a low false alarm rate, demonstrating its 

ability to distinguish disaster-related bursts from 

benign social activity. 

To assess sensitivity to environmental data 

alignment, weather inputs were intentionally 

perturbed by shifting timestamps within a limited 

temporal window. While minor performance 

degradation was observed, MLMT remained stable 

and continued to outperform single-modality 

baselines, indicating robustness to moderate 

misalignment between social media posts and 

weather streams. 

These results suggest that the proposed MLMT is 

resilient to common sources of noise and uncertainty 

in real-world disaster monitoring scenarios, 

supporting its suitability for operational early 

warning systems. 

4.6 Edge deployment efficiency 

Table 9 reports model size and inference latency 

on an edge device. MLMT with QAT achieves a 

model size of 17 MB and an inference speed of 47 ms 

per sample, suitable for real-time deployment. 

Fig. 4 (a bar or scatter plot) visually shows that 

MLMT achieves one of the best trade-offs between 

accuracy and computational efficiency, making it 

highly suitable for field deployment in disaster 

management systems. 
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Table 9. Efficiency comparison on an edge device 

Model 
Precision 

type 

Model 

size 

(MB) 

Latency 

(ms/sample) 

Heavy 

Multimodal 

Transformer 

32-bit 

float 

110 132 

Text-only 

Transformer 

32-bit 

float 

25 39 

MLMT 

without QAT 

32-bit 

float 

42 73 

MLMT with 

QAT 

(proposed) 

8-bit 

quantized 

17 47 

 

 
Figure. 4 Latency and model size comparison for MLMT 

and baseline models 

 

4.7 Qualitative analysis and error patterns 

Qualitative inspection reveals that MLMT 

performs well on flood events with clear visual cues 

and strong rainfall indicators, even when the 

accompanying text is informal or incomplete. 

Landslide cases benefit from both visual and 

meteorological signals, especially when text lacks 

explicit disaster keywords. Earthquake-related posts 

often depend more heavily on textual context, as 

images may not depict obvious damage. 

Most errors occurred in ambiguous posts, such as 

dark-cloud images paired with emotional captions, or 

events featuring large crowds (concerts, festivals) 

that trigger social bursts similar to disaster 

discussions. In such cases, SEBD may initially react, 

but adaptive cross-attention typically suppresses false 

alarms by emphasizing weather cues or image 

features. 

In addition to classification accuracy, calibration 

performance is critical for early warning applications 

where predicted probabilities are used to trigger alerts. 

The proposed MLMT demonstrates favorable 

calibration behavior, as reflected by low Expected 

Calibration Error (ECE) and Brier score values. In 

operational settings, alert thresholds can be 

configured conservatively to balance sensitivity and 

false alarms, for example by triggering alerts only 

when the predicted disaster probability exceeds a 

predefined confidence level. This design allows 

MLMT to support risk-aware decision-making rather 

than binary classification alone. 

4.8 Discussion 

The experimental results demonstrate that 

MLMT effectively bridges the gap between high-

capacity multimodal models and lightweight single-

modality approaches. The combination of 

lightweight encoders, disaster tokens, adaptive cross-

attention, and SEBD yields strong multimodal 

reasoning while maintaining the computational 

efficiency required for edge inference. Ablation 

results highlight the importance of each architectural 

component, while efficiency measurements confirm 

the practicality of deploying MLMT in real 

operational scenarios. 

From an application perspective, integrating 

social bursts with meteorological signals offers 

significant advantages for early warning systems. 

MLMT not only classifies disasters accurately once 

events are underway but also shows potential for 

detecting early signals through a combination of 

abrupt changes in online behavior and environmental 

anomalies. This capability positions MLMT as a 

valuable foundation for operational dashboards used 

by emergency agencies, particularly in regions with 

limited computational resources. 

5. Conclusion   

This study introduced the Modified Lightweight 

Multimodal Transformer (MLMT), a compact and 

efficient architecture designed for rapid disaster 

detection through the integration of social media text, 

images, and real-time weather data. The proposed 

model incorporates several key innovations, 

including local disaster tokens, adaptive cross-

attention, and a Social Event Burst Detector, which 

collectively enhance the model’s ability to capture 

complex multimodal interactions during evolving 

disaster events. Experimental results demonstrated 

that MLMT achieves high accuracy and strong 

discriminatory performance while maintaining a 

significantly reduced model size and low inference 

latency suitable for edge deployment. 

The ablation study confirmed the contribution of 

each component, particularly the adaptive fusion 

mechanism and quantization-aware optimization, 

which enable the model to operate under resource 

constraints without compromising performance. 
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Qualitative analysis further highlighted the capability 

of MLMT to detect early signals of disasters by 

leveraging both environmental cues and sudden 

changes in social media activity. 

From a theoretical perspective, MLMT aligns 

multimodal representation learning with the dynamic 

reliability of disaster-related information sources. 

Adaptive cross-attention, contextual disaster tokens, 

and burst-aware modeling jointly explain the model’s 

robustness and efficiency under non-stationary 

conditions. Overall, MLMT presents a practical and 

scalable approach for real-time disaster intelligence, 

offering clear benefits to early warning systems, 

emergency response operations, and decision-support 

platforms. Future work may explore expanding the 

model to additional modalities, incorporating 

geospatial features, or extending the framework 

toward predictive forecasting of disaster progression. 
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