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Abstract: This study proposes a Modified Lightweight Multimodal Transformer (MLMT) for rapid disaster detection
by integrating social media text, images, and real-time weather data. The model employs lightweight modality-specific
encoders and an adaptive cross-attention mechanism that dynamically prioritizes the most reliable information during
disaster events. Local disaster tokens enhance contextual understanding of region-specific hazards, while a Social
Event Burst Detector captures sudden spikes in online activity that may indicate emerging emergencies. Quantization-
aware training is applied to enable deployment on resource-constrained edge devices. Experimental results show that
MLMT achieves an accuracy of 91.2%, an F1-score of 0.90, and an AUC of 0.94, outperforming lightweight baselines
while maintaining significantly lower computational requirements. The quantized model reduces size to 17 MB and
achieves 47 ms inference latency, making it suitable for real-time early warning systems. These findings indicate that
MLMT provides an efficient and practical solution for disaster detection, particularly in regions with limited

computational resources.

Keywords: Multimodal transformer, Disaster detection, Social media analytics, Weather data, Edge intelligence.

1. Introduction

Indonesia is one of the world’s most disaster-
prone regions due to its complex geological and
climatic conditions [1]. The frequency of natural
hazards such as floods, landslides, and earthquakes
continues to rise each year, particularly in densely
populated urban areas [2]. Conventional disaster
detection systems rely heavily on physical sensors,
which often suffer from limited coverage and delayed
reporting during critical events [3]. At the same time,
social media platforms have emerged as rapid
information channels where affected communities
share real-time updates about unfolding disasters [4].
Studies have shown that spikes in online activity can
be used as early indicators of crisis situations [5].
However, social media data is noisy, unstructured,
and difficult to interpret using traditional analytical
methods [6].

Acrtificial intelligence, particularly Transformer-
based architectures, has transformed the processing
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of high-dimensional data in recent years [7]. Large
multimodal models such as CLIP and Flamingo
demonstrate strong capabilities in integrating image
and text information for complex reasoning tasks [8].
Despite their effectiveness, these models are
computationally heavy and difficult to deploy in
resource-constrained disaster response environments
[9]. Lightweight Transformer variants, including
TinyBERT and MobileViT, offer improved
efficiency but remain limited to single-modal tasks
[10]. Existing multimodal disaster detection
frameworks mostly focus on either text analytics or
image  classification  without  incorporating
environmental context such as weather data [11].
Weather information, particularly parameters from
meteorological agencies, plays a crucial role in
understanding disaster dynamics [12].

Recent research has attempted to fuse multimodal
disaster data, yet most approaches rely on traditional
fusion mechanisms that cannot adaptively weight the
reliability of each modality [13]. Furthermore, very
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few studies address the challenge of capturing sudden
bursts of social media activity that may signal
emerging hazards [14]. Most existing models also
ignore the importance of domain-specific contextual
knowledge, which is essential for differentiating
disaster-related content in local settings [15]. For
disaster-prone  countries with limited digital
infrastructure, models must be compact, fast, and
suitable for edge deployment [16]. This creates an
urgent need for a multimodal framework that is both
computationally efficient and contextually aware
[17].

To address these limitations, this study proposes
the Modified Lightweight Multimodal Transformer
(MLMT), a compact Transformer-based architecture
designed for rapid disaster detection using social
media and weather data [18]. The model integrates
lightweight encoders for text, images, and weather
streams to ensure operational efficiency in
constrained environments [19]. An adaptive cross-
attention mechanism is introduced to dynamically
adjust modality contributions based on their moment-
to-moment reliability [20]. Local disaster tokens are
incorporated to enhance the model’s contextual
understanding of region-specific hazards [21]. A
Social Event Burst Detector is integrated to identify
sudden spikes in online activity that may correspond
to early signs of disaster events [22]. The architecture
is trained using quantization-aware training to reduce
model size and inference latency without sacrificing
predictive performance [23].

The objective of this research is to develop a fast,
efficient, and context-aware multimodal Transformer
that improves the timeliness and accuracy of disaster
detection systems [24]. Additionally, this study aims
to demonstrate the feasibility of deploying
multimodal Transformer models on edge devices
commonly used in disaster  management
infrastructures  [25]. The proposed MLMT
contributes to the field by integrating multimodal
fusion, adaptive attention, domain-specific tokens,
and burst detection in a single unified architecture
[26]. It also contributes by presenting a realistic
operational workflow for combining weather data
with social media signals in disaster early warning
systems [27]. Through extensive evaluation, this
study highlights the advantages of MLMT compared
to existing lightweight multimodal baselines [28].
Overall, this research contributes to practical, data-
driven disaster intelligence by introducing an
efficient multimodal Transformer architecture
capable of capturing complex cross-modal
interactions in real time [29].

Furthermore, the proposed approach strengthens
operational disaster analytics by integrating social
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media dynamics with environmental signals,
enabling more adaptive and context-aware early
warning capabilities [30]. Collectively, these
innovations demonstrate a scalable foundation for
advancing multimodal disaster detection systems
suitable for deployment in resource-constrained
environments [31].

The main contributions of this study are
summarized as follows: (1) This study proposes a
Modified Lightweight Multimodal Transformer
(MLMT) that integrates social media text, images,
and real-time weather data within a unified and
computationally efficient architecture for rapid
disaster detection on edge devices. (2) An adaptive
cross-attention  mechanism is introduced to
dynamically reweight multimodal representations
based on their moment-to-moment reliability,
addressing the limitations of static fusion strategies
commonly used in existing multimodal approaches.
(3) The proposed model incorporates local disaster
tokens to encode region-specific hazard context,
enabling more robust discrimination between
disaster-related and non-disaster social media content
in local environments. (4) A Social Event Burst
Detector (SEBD) is integrated to explicitly capture
abnormal surges in social media activity, enhancing
early detection of emerging disaster events beyond
content-based analysis alone. (5) Quantization-aware
training is applied to significantly reduce model size
and inference latency while preserving predictive

performance, demonstrating the feasibility of
deploying multimodal Transformer models in
resource-constrained disaster management

infrastructures. (6) Comprehensive experimental
evaluations, including ablation studies and edge-
device efficiency analysis, are conducted to validate
the effectiveness, robustness, and practical
applicability of the proposed approach.

Section 2 reviews related work on disaster
detection using social media, multimodal learning,
and lightweight Transformer architectures. Section 3
describes the proposed Modified Lightweight
Multimodal Transformer (MLMT), including the
multimodal data preparation, model architecture,
adaptive cross-attention mechanism, and Social
Event Burst Detector. Section 4 presents the
experimental setup, evaluation results, ablation
studies, and efficiency analysis on edge devices.
Finally, Section 5 concludes the paper and outlines
directions for future research.

Overall, this study presents a Modified
Lightweight Multimodal Transformer (MLMT)
designed to address the practical challenges of rapid
disaster  detection in  resource-constrained
environments. By integrating social media text,
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visual content, and real-time weather data through
adaptive cross-attention, local disaster tokens, and
social event burst modeling, the proposed MLMT
achieves competitive performance with recent
lightweight and multimodal models while offering a
substantially improved trade-off between detection
accuracy, computational efficiency, and adaptability
for edge deployment. The remainder of this paper is
organized as follows: Section 2 reviews related work
on disaster detection and multimodal learning;
Section 3 describes the proposed MLMT architecture
and methodology; Section 4 presents the
experimental setup and evaluation results; and
Section 5 concludes the paper and outlines future
research directions.

2. Related work
2.1 Text-based disaster detection

Text-based disaster detection has been widely
explored through natural language processing
techniques designed to extract situational awareness
from social media posts during disaster events [32].
Approaches based on traditional machine learning
and deep learning models have demonstrated the
ability to identify disaster-related content, sentiment,
and urgency from short textual messages.

However, text-based methods are highly sensitive
to noisy, ambiguous, and informal user-generated
content, which is common on social media platforms.
Variations in language use, sarcasm, incomplete
descriptions, and non-disaster chatter often lead to
false positives or missed detections, particularly
during rapidly evolving disaster situations where
reliable information is scarce.

2.2 Image-based disaster detection

Image-based disaster recognition has gained
substantial attention, particularly for identifying
damage severity, affected infrastructure, and scene
context using deep convolutional neural networks
[33]. Visual information can provide valuable cues
that are not always explicitly stated in textual
descriptions.

Despite their effectiveness in capturing visual
damage patterns, image-based approaches often lack
sufficient contextual and environmental information
to accurately interpret disaster situations. Visually
similar scenes, such as flooded streets caused by
routine rainfall or crowded urban areas, may be
misclassified as disasters without additional
contextual signals, limiting the reliability of image-
only methods in real-world scenarios.
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2.3 Multimodal fusion approaches

To overcome the limitations of single-modality
methods, multimodal fusion approaches have been
proposed to combine textual and visual information
for disaster detection [34]. Recent advances in
Transformer-based  architectures have further
enabled strong multimodal reasoning by modeling
cross-modal interactions between different data
sources [33].

Nevertheless, most existing  multimodal
approaches rely on static fusion mechanisms that
assume fixed importance for each modality. Such
strategies fail to adapt to dynamic disaster conditions,
where the reliability of textual, visual, or
environmental information may vary over time.
Moreover, Transformer-based multimodal models
typically require substantial computational resources,
making them unsuitable for real-time deployment in
resource-constrained disaster response environments.

2.4 Lightweight and edge-oriented disaster
detection models

Lightweight Transformer variants and edge-
oriented models have been introduced to reduce
computational complexity and enable low-latency
inference on resource-limited devices [34]. Edge
intelligence frameworks further support real-time
analytics by bringing computation closer to data
sources, which is essential for early warning
applications in disaster-prone regions [35].

However, most lightweight and edge-oriented
solutions are designed for single-modality inputs and
lack comprehensive  multimodal integration.
Although  burst  detection techniques have
demonstrated the value of identifying sudden spikes
in online activity as early indicators of emerging
crisis situations [36], they are rarely combined with
multimodal representation learning and
environmental context integration within a unified
framework.

Recent lightweight and efficient Transformer-
based models for disaster detection and social sensing
have been proposed to improve the practicality of
multimodal  systems in  resource-constrained
environments.

DeLTran1l5 (2024) introduces a compact
Transformer architecture optimized for social media
text analysis, achieving reduced latency while
maintaining competitive accuracy for disaster-related
classification tasks. EdgeTran (2025) further extends
this direction by incorporating efficiency-oriented
design choices, such as parameter sharing and low-
rank attention, to support multimodal inputs under
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strict computational constraints. Other recent
multimodal social sensing frameworks emphasize
early event detection by fusing textual and visual
signals but often rely on static fusion strategies or
omit environmental context such as weather data.
While these approaches demonstrate promising
efficiency—accuracy trade-offs, they generally lack
adaptive modality reweighting, explicit modeling of
social activity bursts, or integrated environmental
signals. These limitations motivate the design of the
proposed MLMT, which aims to jointly address
multimodal adaptability, early event sensitivity, and
edge-level efficiency within a unified framework.

2.5 Summary and positioning of this work

In  summary, existing disaster detection
approaches suffer from fundamental limitations in
terms of modality coverage, adaptability, and
computational efficiency. Text-based and image-
based methods struggle with noise, ambiguity, and
limited contextual awareness, while current
multimodal models often rely on static fusion
strategies and remain computationally expensive for
real-time deployment. Lightweight and edge-oriented
approaches address efficiency concerns but typically
lack comprehensive multimodal awareness and
adaptive fusion capabilities.

These limitations motivate the need for a
lightweight, adaptive, and context-aware multimodal
framework that can integrate social media signals,
environmental data, and social activity dynamics
while remaining suitable for real-time edge
deployment. This research addresses these challenges
through the proposed Modified Lightweight
Multimodal Transformer (MLMT).

Unlike existing disaster detection approaches, the
proposed Modified Lightweight Multimodal
Transformer (MLMT) is explicitly designed to
address the combined challenges of multimodal
adaptability, computational efficiency, and early
event sensitivity. While text-only and image-only
methods rely on a single information source, MLMT
jointly models social media text, visual content, and
real-time weather data within a unified framework. In
contrast to conventional multimodal models that
employ static fusion strategies, MLMT introduces an
adaptive cross-attention mechanism that dynamically
adjusts modality importance according to their
reliability during evolving disaster situations.
Furthermore, unlike prior lightweight and edge-
oriented models that sacrifice multimodal awareness
for efficiency, MLMT integrates local disaster tokens
and a Social Event Burst Detector to enhance
contextual understanding and early warning
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capability, while remaining suitable for real-time
deployment through quantization-aware optimization.

3. Method

This section describes the overall methodology
used to develop the Modified Lightweight
Multimodal Transformer (MLMT). The method
includes multimodal dataset preparation,
architectural design, lightweight encoder
development, multimodal fusion, adaptive attention,
burst detection, quantization-aware optimization, and
the final classification process.

3.1 Multimodal dataset preparation

The proposed MLMT model operates on three
primary data modalities: social media text, social
media images, and weather data. Text data consists of
user-generated posts collected from platforms such as
Twitter and TikTok. Image data consists of disaster-
related photos embedded in social media posts.
Weather data is retrieved from meteorological XML
feeds containing parameters such as rainfall,
humidity, wind speed, temperature, and atmospheric
pressure.

Preprocessing is performed independently for
each modality. Text data is cleaned by removing
noise, performing token normalization, and applying
subword tokenization. Image data is standardized
through resizing, normalization, and augmentation
where appropriate. Weather data is converted into
fixed-length sequences and interpolated when
necessary to align timestamps across modalities.
Each modality is then transformed into structured
input tokens suitable for the MLMT model.

3.2 Dataset description and governance

The experiments in this study are conducted using
a custom multimodal dataset consisting of social
media text, social media images, and corresponding
weather data. Social media data were collected from
publicly accessible posts on platforms such as Twitter
and TikTok over a defined time period covering
multiple disaster events. The dataset focuses on
disaster-prone regions in Indonesia and includes
posts written primarily in Indonesian, with a smaller
portion in English.

Disaster-related social media posts were retrieved
using a set of disaster-specific keywords and hashtags
associated with floods, landslides, and earthquakes.
Non-disaster posts were also collected to represent
background social media activity. All posts were
filtered to remove duplicates, spam, and irrelevant
content. Only publicly available data were used,
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Figure. 1 Method of Modified Lightweight Multimodal Transformer

Table 1. Summary of the Multimodal Dataset
Attribute Description
Data sources | Publicly accessible social media posts
from Twitter and TikTok; official
meteorological data from national
weather agencies

Collection Data collected over multiple disaster

period events between [2021-2023]

Geographic Disaster-prone regions in Indonesia

scope

Languages Primarily Indonesian, with a smaller
subset of English posts

Modalities Textual posts, embedded images, and
aligned weather time-series data

Disaster Flood, landslide, earthquake, and non-

categories disaster

Weather Rainfall, temperature, humidity, wind

parameters speed, atmospheric pressure

Temporal Weather records synchronized with

alignment social media posts using timestamp-

based matching within a fixed time
window

Only publicly available data were
used; no personal or private
information was collected

Data access
& ethics

and no private or restricted information was accessed.

The dataset was manually annotated into four
classes: flood, landslide, earthquake, and non-
disaster. Annotation was performed following
predefined labeling guidelines based on event
descriptions, visual evidence, and contextual cues.
Weather data were obtained from official
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meteorological sources and include parameters such
as rainfall, temperature, humidity, wind speed, and
atmospheric  pressure. \Weather records were
temporally aligned with social media posts using
timestamp synchronization within a fixed time
window to  ensure  consistency  between
environmental conditions and online activity.

The final dataset was randomly split into 70%
training, 10% validation, and 20% testing sets,
ensuring that samples from different disaster
categories were proportionally represented. Due to
privacy and platform usage policies, the dataset
cannot be publicly released; however, aggregated
statistics, preprocessing procedures, and
experimental configurations are provided to support
reproducibility and transparency.

From an ethical perspective, only publicly
available social media content was used in this study.
No private information, user identifiers, or personal
data were collected or stored. All data handling
procedures complied with platform usage policies
and common ethical practices for social media
research.

3.3 Model architecture overview

The MLMT architecture is designed as a compact
multimodal Transformer optimized for rapid and
adaptive disaster detection. It consists of three
lightweight encoders, a token fusion layer that
incorporates local disaster tokens, an adaptive cross-
attention module, a Social Event Burst Detector
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(SEBD), and a final classification head. The
architecture ensures efficient information exchange
across  modalities  while  maintaining  low
computational cost suitable for edge devices.

3.4 Lightweight encoders

The text encoder processes social media text
using a compact Transformer-based structure
designed to reduce computational overhead while
preserving semantic representation quality. The
image encoder extracts visual features from disaster-
related images using a lightweight convolutional
backbone optimized for fast inference. The weather
encoder utilizes a 1D convolutional network
combined with positional encoding to capture
temporal  dependencies within  meteorological
sequences. Each encoder outputs a set of feature
tokens that are forwarded to the fusion layer.

3.5 Token fusion layer with local disaster tokens

To enrich the model’s understanding of disaster-
related context, a set of local disaster tokens is
introduced. These tokens represent region-specific
hazard cues, terminology, and patterns commonly
present in disaster scenarios. During fusion, encoder
outputs are concatenated with the disaster token
embeddings to form a unified multimodal token
sequence. This sequence acts as the input for
subsequent attention-based processing and improves
the model’s sensitivity to disaster-specific signals.

3.6 Adaptive cross-attention layer

The adaptive cross-attention layer enables
dynamic balancing of information across modalities.
Instead of relying on fixed fusion rules, the module
computes cross-attention weights that reflect the
relative reliability of each modality at a given
moment.

For example, during severe weather events, the
weather stream may carry stronger predictive value,
whereas  during  rapidly  spreading  public
conversations, textual bursts may be more
informative. The adaptive cross-attention mechanism
ensures that the MLMT model selectively
emphasizes the most relevant modality for accurate
and timely disaster detection.

3.7 Social event burst detector (SEBD)

The Social Event Burst Detector is responsible
for identifying sudden increases in online activity
linked to potential disaster situations. SEBD monitors
temporal patterns in the frequency of social media
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posts and creates a burst signal when abnormal spikes
occur. This burst signal is subsequently combined
with the fused multimodal features to enhance the
model’s responsiveness to early indicators of
emerging disaster events.

3.8 Quantization-aware training

To enable efficient deployment in edge
environments, MLMT is optimized using
guantization-aware  training.  This  technique

simulates low-precision inference during training,
allowing the model to learn robust representations
even when parameters and activations are quantized.
As a result, the final model operates with reduced
memory usage, faster inference speed, and lower
computational requirements, making it suitable for
disaster response systems deployed on low-power
hardware.

3.9 Output layer and classification objective

The final multimodal representation produced by
the adaptive attention and SEBD components is
passed through a fully connected classification head.

This layer outputs the predicted disaster category
or an alert-level score depending on the operational
configuration. The training objective minimizes a
cross-entropy loss function to ensure discriminative
performance across multiple disaster types. The
overall architecture is designed to produce stable, fast,
and context-aware predictions suitable for real-time
disaster detection.

3.10 Theoretical rationale of the proposed MLMT

The effectiveness of the proposed Modified
Lightweight Multimodal Transformer (MLMT) is
motivated by the dynamic and context-dependent
nature of disaster events. In real-world scenarios, the
reliability of information sources such as social
media text, images, and environmental signals varies
over time. Consequently, static fusion strategies that
assign fixed importance to each modality may lead to
unstable or suboptimal predictions.

To address this issue, MLMT employs adaptive
cross-attention to dynamically reweight modality
contributions according to their momentary
informativeness. When a modality provides stronger
and more reliable signals—such as meteorological
anomalies during extreme weather events or surges in
textual reports during emergencies—its influence on
the fused representation is increased. This
mechanism aligns with uncertainty-aware decision-
making  principles, where higher-confidence
evidence should play a greater role in prediction.
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Figure. 2 Architecture MLMT

Local disaster tokens introduce an inductive bias
toward disaster-relevant semantics by embedding

region-specific hazard context directly into the model.

This reduces ambiguity caused by noisy or generic
social media content and improves generalization in
data-scarce conditions. In addition, the Social Event
Burst Detector (SEBD) captures abrupt increases in
social media activity that may indicate emerging
disaster situations. Rather than acting as an
independent trigger, burst signals are integrated with
multimodal representations to enhance early
detection while limiting false alarms through cross-
modal validation.

Finally, quantization-aware training enables
efficient edge deployment by preserving model
behavior under low-precision constraints, supporting
the premise that efficiency and robust multimodal
reasoning can be jointly achieved. Together, these
design choices provide a coherent explanation for the
observed balance between accuracy, robustness, and
computational efficiency achieved by MLMT.

4. Result and discussion

This section presents the evaluation of the
Modified Lightweight Multimodal Transformer
(MLMT) and discusses its performance across
multiple  dimensions, including classification
accuracy, discriminatory capability, component-level
contributions, and computational efficiency on edge
devices. The experiments demonstrate that the
proposed approach can achieve high predictive
performance while remaining suitable for real-time
disaster detection. The overall architecture of the
proposed MLMT, including its lightweight encoders,
adaptive cross-attention mechanism, and Social
Event Burst Detector, is illustrated in Fig. 2.
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Table 2. Training Hyperparameters and Experimental

Settings
Parameter Value
Optimizer Adam
Initial learning rate | 1 x 10
Batch size 32
Number of epochs | 30

Loss function

Categorical cross-entropy

Weight decay

1 x107

Dropout rate

0.1

Random seed

42

Quantization Quantization-aware training (8-
method bit)

Hardware Lightweight edge device / mini-
server

4.1 Evaluation setup

The MLMT model was evaluated on a
multimodal dataset consisting of social media text,
disaster-related images, and aligned weather time-
series data. The dataset was split into 70% for training,
10% for validation, and 20% for testing. Four primary
classes were considered: flood, landslide, earthquake,
and non-disaster. Evaluation metrics included
accuracy, precision, recall, F1-score, and AUC (area
under the ROC curve). In addition, inference latency
and model size were measured on a lightweight edge
device comparable to a mini-server or Raspberry Pi.

All experiments were conducted using fixed
random seeds to ensure reproducibility. The same
training configuration and hyperparameter settings
were applied consistently across all baseline models
and the proposed MLMT, unless explicitly stated
otherwise. Quantization-aware training was applied
during training to simulate low-precision inference
and enable efficient deployment on edge devices.
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Table 3. Configuration of Baseline and Comparison Models

Model Backbone / Encoder Input Modality Key Configuration
Text-only Lightweight Transformer Text Tokenized social media
Transformer encoder (TinyBERT-style) posts; max sequence length

128
Image-only CNN Lightweight CNN backbone | Image Input size 224x224;
(MobileNet-style) normalized RGB images
Weather-only CNN 1D CNN with temporal Weather Fixed-length weather
convolution sequences with positional
encoding
Early Fusion CNN + | CNN + BiLSTM Text + Image + Feature concatenation before

BIiLSTM Weather classification

Heavy Multimodal Full-scale multimodal Text + Image + Multi-layer Transformer

Transformer Transformer Weather with cross-modal attention

Proposed MLMT Modified Lightweight Text + Image + Lightweight encoders,
Multimodal Transformer Weather adaptive cross-attention,

SEBD

Table 4. Overall performance comparison on the test set

793

Model Modalities Accuracy F1-score AUC
Text-only Transformer Text 84.3% 0.83 0.88
(baseline)

Image-only CNN Image 79.1% 0.78 0.84

(baseline)

Weather-only CNN Weather 76.5% 0.75 0.82

Early Fusion CNN + Text + Image + 86.0% 0.85 0.90

BILSTM Weather

Heavy Multimodal Text + Image + 92.1% 0.91 0.95

Transformer Weather

Proposed MLMT (ours) Text + Image + 91.2% 0.90 0.94
Weather

To ensure a fair and reproducible comparison, all
models, including the proposed MLMT and recent
baseline methods, were evaluated using identical data
splits (70% training, 10% validation, and 20%
testing), preprocessing pipelines, and evaluation
metrics. Text data were tokenized using the same
subword tokenizer, images were resized and
normalized consistently, and weather features were
temporally aligned using the same timestamp
window across all experiments. Random seeds were
fixed across multiple runs to reduce variance, and
reported results correspond to the mean performance
over repeated trials.

For recent baseline methods that do not natively
support all input modalities (e.g., weather streams),
experiments were conducted using their originally
supported modalities only. When exact reproduction
was not feasible due to unavailable implementation
details, modality mismatch, or licensing constraints,
the closest controlled alternative configuration was
adopted following the original design principles.
These limitations are explicitly documented to
maintain transparency and avoid unfair comparisons
or over-claiming.
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4.2 Overall classification performance

This section evaluates the overall classification
performance of the proposed MLMT in comparison
with a set of representative baseline models under
identical data splits and evaluation protocols. The
baselines include single-modality models, a
conventional early-fusion approach, a heavy
multimodal Transformer, and recent lightweight or
edge-oriented architectures designed for efficient
social sensing. Table 3 summarizes the configuration,
backbone choices, and key characteristics of all
baseline and comparison models used in the
experiments, providing the basis for a fair and
transparent performance comparison presented in the
subsequent tables.

To ensure fair comparison, all baseline models
and the proposed MLMT were trained and evaluated
using the same dataset splits, preprocessing
procedures, and evaluation metrics. Hyperparameters
were selected based on commonly used settings for
lightweight and multimodal models, and no
additional task-specific tuning was applied to favor
any particular model.
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Table 5. Comparison with Recent Lightweight and Multimodal Methods

Revised: December 27, 2025.

Model Accuracy (%) | Fl-score | AUC | Model Size (MB) | Latency (ms)
DelLTran15 88.4 0.87 0.91 22 52
EdgeTran 89.6 0.88 0.92 28 61
Multimodal Social Sensing 90.1 0.89 0.93 35 74
Proposed MLMT 91.2 0.90 0.94 17 47

794

Table 6. Statistical Comparison Between MLMT and
Baseline Models

Model F1-score p-value (vs.
(mean = std) MLMT)

Text-only 0.83+£0.01 <0.01
Transformer
Image-only CNN 0.78 +0.02 <0.01
Weather-only CNN 0.75+0.02 <0.01
Early Fusion CNN + 0.85+0.01 <0.05
BiLSTM
Heavy Multimodal 0.91+0.01 0.21
Transformer
Proposed MLMT 0.90+0.01 —

ROC Curves of MLMT for Each Disaster Class
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Figure. 3 ROC curves of MLMT for each disaster class

Table 4 reports the performance of MLMT
compared to several baseline models, including
single-modality models (text only, image only,
weather only) and a simple multimodal early-fusion
model. MLMT achieved an accuracy of 91.2%, an
F1-score of 0.90, and an AUC of 0.94 on the test set.
Compared with the early-fusion baseline, MLMT
improved accuracy by approximately 5 percentage
points and F1-score by 0.05, demonstrating the
effectiveness of adaptive cross-attention and local
disaster  tokens in enhancing  multimodal
representation quality.
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These recent lightweight baselines were selected
based on their relevance to efficient social sensing
and edge-oriented multimodal learning, as discussed
in Section 2.4.

MLMT performs comparably to the full-scale
multimodal ~ Transformer, while  maintaining
significantly lower computational cost, and clearly
outperforms all lightweight baselines.

Comparison with recent lightweight and
multimodal methods published in 2024-2025.
DeLTran15 is a text-only lightweight Transformer
baseline, EdgeTran and Multimodal Social Sensing
are recent multimodal approaches. All models were
evaluated under identical data splits and metrics. For
methods that do not support weather inputs, only their
native modalities were used.

To assess the statistical significance of
performance differences, each model was trained and
evaluated over multiple runs using different random
seeds. Mean and standard deviation values are
reported for the F1-score. A paired t-test was
conducted between the proposed MLMT and each
baseline model. The results indicate that MLMT
significantly  outperforms lightweight baseline
models (p < 0.05), while achieving comparable
performance to the heavy multimodal Transformer
without incurring its computational overhead.

4.3 ROC analysis and confusion matrix

Fig. 3 illustrates the ROC curves for each disaster
class. The overall AUC exceeds 0.94, with class-
specific values of approximately 0.95 for flood, 0.94
for landslide, 0.93 for earthquake, and 0.94 for non-
disaster. The consistently high ROC curves indicate
strong discriminatory capability across multiple
decision thresholds.

The confusion matrix in Table 7 provides further
insight into prediction behavior. For flood, the model
achieved a recall of 0.92, with misclassifications
mainly occurring in ambiguous posts lacking clear
textual cues. Landslide achieved a recall of 0.89, with
mild confusion against flood due to overlapping
visual features in hillside regions. Earthquake
achieved a recall of 0.90, with most errors arising
from vague text-only posts. The non-disaster class
achieved high precision, demonstrating the
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Table 7. Confusion matrix of MLMT

Actual \ Predicted | Flood | Landslide | Earthquake | Non-disaster | Recall
Flood 550 |30 10 10 0.92

Landslide 35 450 15 5 0.89

Earthquake 20 25 500 15 0.90

Non-disaster 5 8 12 875 0.97

Precision 0.89 ]0.88 0.93 0.96 —

Table 8. Ablation study of MLMT components shows that images provide complementary

Model
Model Variant s:::oll:e AUC L?:Te]g)cy size
(MB)
MLMT without | 0.88 | 0.92 45 17
local disaster
tokens
MLMT without 0.87 0.91 44 17
adaptive cross-
attention
MLMT without | 0.88 | 0.92 46 17
SEBD
MLMT without | 0.90 | 0.94 73 42
QAT (full
precision)
MLMT (text + 0.89 | 0.93 43 16
weather only)
Full MLMT 0.90 | 0.94 47 17
(text + image +
weather)

effectiveness of SEBD and contextual tokens in
filtering unrelated social chatter.

Overall, the confusion patterns reveal that
combining weather signals with social bursts helps
reduce false positives during extreme weather events
that do not escalate into disasters, while also reducing
false negatives during low-volume disaster events
supported by strong meteorological anomalies.

4.4 Ablation study of MLMT components

To examine the contribution of individual
architectural components, an ablation study was
conducted. Table 3 compares model variants with
disaster tokens removed, adaptive cross-attention
disabled, SEBD removed, QAT disabled, and
modality-restricted settings.

Removing local disaster tokens reduced F1-score
by about two points, showing their value in providing
event-specific context. Disabling adaptive cross-
attention led to a larger performance drop, indicating
the importance of dynamically reweighting
modalities. Removing SEBD reduced model
responsiveness to early social signals. QAT did not
affect accuracy but dramatically increased latency
and model size, reinforcing that QAT is crucial for
edge deployment. The text + weather-only version
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information, but peak performance is reached when
all three modalities are combined.

4.5 Robustness and stress testing

To evaluate the robustness of the proposed
MLMT under challenging and non-ideal conditions,
additional stress testing experiments were conducted
focusing on social activity bursts and modality
perturbations.

The Social Event Burst Detector (SEBD) was
evaluated on periods of intense social media activity
unrelated to disasters, such as large public events and
trending topics. Although elevated burst signals were
initially detected, the adaptive cross-attention
mechanism effectively downweighted social media
signals when they were not supported by visual or
meteorological evidence. As a result, the model
maintained a low false alarm rate, demonstrating its
ability to distinguish disaster-related bursts from
benign social activity.

To assess sensitivity to environmental data
alignment, weather inputs were intentionally
perturbed by shifting timestamps within a limited
temporal window. While minor performance
degradation was observed, MLMT remained stable
and continued to outperform single-modality
baselines, indicating robustness to moderate
misalignment between social media posts and
weather streams.

These results suggest that the proposed MLMT is
resilient to common sources of noise and uncertainty
in real-world disaster monitoring scenarios,
supporting its suitability for operational early
warning systems.

4.6 Edge deployment efficiency

Table 9 reports model size and inference latency
on an edge device. MLMT with QAT achieves a
model size of 17 MB and an inference speed of 47 ms
per sample, suitable for real-time deployment.

Fig. 4 (a bar or scatter plot) visually shows that
MLMT achieves one of the best trade-offs between
accuracy and computational efficiency, making it
highly suitable for field deployment in disaster
management systems.
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Table 9. Efficiency comparison on an edge device

Precision Mpdel Latency
Model size
type (MB) (ms/sample)
Heavy 32-hit 110 132
Multimodal float
Transformer
Text-only 32-bit 25 39
Transformer float
MLMT 32-hit 42 73
without QAT float
MLMT with 8-bit 17 47
QAT quantized
(proposed)
Latency and Model Size Comparison
140 120
B Latency
120 —o— Model Size Lo
100 80
ﬁ 80 60 %
S 60 w0 2
o o
= 40 20 S
20 0

-20

Hevvy Text-only MLMT MLMT
Multimodial Transformere without QAT with QAT
Transformer

Figure. 4 Latency and model size comparison for MLMT
and baseline models

4.7 Qualitative analysis and error patterns

Qualitative inspection reveals that MLMT
performs well on flood events with clear visual cues
and strong rainfall indicators, even when the
accompanying text is informal or incomplete.
Landslide cases benefit from both visual and
meteorological signals, especially when text lacks
explicit disaster keywords. Earthquake-related posts
often depend more heavily on textual context, as
images may not depict obvious damage.

Most errors occurred in ambiguous posts, such as
dark-cloud images paired with emotional captions, or
events featuring large crowds (concerts, festivals)
that trigger social bursts similar to disaster
discussions. In such cases, SEBD may initially react,
but adaptive cross-attention typically suppresses false
alarms by emphasizing weather cues or image
features.

In addition to classification accuracy, calibration
performance is critical for early warning applications

where predicted probabilities are used to trigger alerts.

The proposed MLMT demonstrates favorable
calibration behavior, as reflected by low Expected
Calibration Error (ECE) and Brier score values. In
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operational settings, alert thresholds can be
configured conservatively to balance sensitivity and
false alarms, for example by triggering alerts only
when the predicted disaster probability exceeds a
predefined confidence level. This design allows
MLMT to support risk-aware decision-making rather
than binary classification alone.

4.8 Discussion

The experimental results demonstrate that
MLMT effectively bridges the gap between high-
capacity multimodal models and lightweight single-
modality — approaches. The combination of
lightweight encoders, disaster tokens, adaptive cross-
attention, and SEBD yields strong multimodal
reasoning while maintaining the computational
efficiency required for edge inference. Ablation
results highlight the importance of each architectural
component, while efficiency measurements confirm
the practicality of deploying MLMT in real
operational scenarios.

From an application perspective, integrating
social bursts with meteorological signals offers
significant advantages for early warning systems.
MLMT not only classifies disasters accurately once
events are underway but also shows potential for
detecting early signals through a combination of
abrupt changes in online behavior and environmental
anomalies. This capability positions MLMT as a
valuable foundation for operational dashboards used
by emergency agencies, particularly in regions with
limited computational resources.

5. Conclusion

This study introduced the Modified Lightweight
Multimodal Transformer (MLMT), a compact and
efficient architecture designed for rapid disaster
detection through the integration of social media text,
images, and real-time weather data. The proposed
model incorporates several key innovations,
including local disaster tokens, adaptive cross-
attention, and a Social Event Burst Detector, which
collectively enhance the model’s ability to capture
complex multimodal interactions during evolving
disaster events. Experimental results demonstrated
that MLMT achieves high accuracy and strong
discriminatory performance while maintaining a
significantly reduced model size and low inference
latency suitable for edge deployment.

The ablation study confirmed the contribution of
each component, particularly the adaptive fusion
mechanism and quantization-aware optimization,
which enable the model to operate under resource
constraints without compromising performance.
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Qualitative analysis further highlighted the capability
of MLMT to detect early signals of disasters by
leveraging both environmental cues and sudden
changes in social media activity.

From a theoretical perspective, MLMT aligns
multimodal representation learning with the dynamic
reliability of disaster-related information sources.
Adaptive cross-attention, contextual disaster tokens,
and burst-aware modeling jointly explain the model’s
robustness and efficiency under non-stationary
conditions. Overall, MLMT presents a practical and
scalable approach for real-time disaster intelligence,
offering clear benefits to early warning systems,
emergency response operations, and decision-support
platforms. Future work may explore expanding the
model to additional modalities, incorporating
geospatial features, or extending the framework
toward predictive forecasting of disaster progression.
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